Cargando…

Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise

This investigation evaluated whether moderate‐intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle‐aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven...

Descripción completa

Detalles Bibliográficos
Autores principales: Murach, Kevin A., Walton, R. Grace, Fry, Christopher S., Michaelis, Sami L., Groshong, Jason S., Finlin, Brian S., Kern, Philip A., Peterson, Charlotte A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037921/
https://www.ncbi.nlm.nih.gov/pubmed/27650251
http://dx.doi.org/10.14814/phy2.12973
_version_ 1782455842542452736
author Murach, Kevin A.
Walton, R. Grace
Fry, Christopher S.
Michaelis, Sami L.
Groshong, Jason S.
Finlin, Brian S.
Kern, Philip A.
Peterson, Charlotte A.
author_facet Murach, Kevin A.
Walton, R. Grace
Fry, Christopher S.
Michaelis, Sami L.
Groshong, Jason S.
Finlin, Brian S.
Kern, Philip A.
Peterson, Charlotte A.
author_sort Murach, Kevin A.
collection PubMed
description This investigation evaluated whether moderate‐intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle‐aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle‐aged women (56 ± 5 years, BMI 26 ± 1, VO (2max) 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I‐ and II‐associated satellite cell density and cross‐sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle‐remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate‐intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle‐aged women, who are susceptible to muscle mass loss with progressing age.
format Online
Article
Text
id pubmed-5037921
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-50379212016-09-30 Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise Murach, Kevin A. Walton, R. Grace Fry, Christopher S. Michaelis, Sami L. Groshong, Jason S. Finlin, Brian S. Kern, Philip A. Peterson, Charlotte A. Physiol Rep Original Research This investigation evaluated whether moderate‐intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle‐aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle‐aged women (56 ± 5 years, BMI 26 ± 1, VO (2max) 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I‐ and II‐associated satellite cell density and cross‐sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle‐remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate‐intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle‐aged women, who are susceptible to muscle mass loss with progressing age. John Wiley and Sons Inc. 2016-09-20 /pmc/articles/PMC5037921/ /pubmed/27650251 http://dx.doi.org/10.14814/phy2.12973 Text en © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Murach, Kevin A.
Walton, R. Grace
Fry, Christopher S.
Michaelis, Sami L.
Groshong, Jason S.
Finlin, Brian S.
Kern, Philip A.
Peterson, Charlotte A.
Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise
title Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise
title_full Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise
title_fullStr Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise
title_full_unstemmed Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise
title_short Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise
title_sort cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037921/
https://www.ncbi.nlm.nih.gov/pubmed/27650251
http://dx.doi.org/10.14814/phy2.12973
work_keys_str_mv AT murachkevina cycletrainingmodulatessatellitecellandtranscriptionalresponsestoaboutofresistanceexercise
AT waltonrgrace cycletrainingmodulatessatellitecellandtranscriptionalresponsestoaboutofresistanceexercise
AT frychristophers cycletrainingmodulatessatellitecellandtranscriptionalresponsestoaboutofresistanceexercise
AT michaelissamil cycletrainingmodulatessatellitecellandtranscriptionalresponsestoaboutofresistanceexercise
AT groshongjasons cycletrainingmodulatessatellitecellandtranscriptionalresponsestoaboutofresistanceexercise
AT finlinbrians cycletrainingmodulatessatellitecellandtranscriptionalresponsestoaboutofresistanceexercise
AT kernphilipa cycletrainingmodulatessatellitecellandtranscriptionalresponsestoaboutofresistanceexercise
AT petersoncharlottea cycletrainingmodulatessatellitecellandtranscriptionalresponsestoaboutofresistanceexercise