Cargando…

Remote Bridge Deflection Measurement Using an Advanced Video Deflectometer and Actively Illuminated LED Targets

An advanced video deflectometer using actively illuminated LED targets is proposed for remote, real-time measurement of bridge deflection. The system configuration, fundamental principles, and measuring procedures of the video deflectometer are first described. To address the challenge of remote and...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Long, Pan, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038622/
https://www.ncbi.nlm.nih.gov/pubmed/27563901
http://dx.doi.org/10.3390/s16091344
Descripción
Sumario:An advanced video deflectometer using actively illuminated LED targets is proposed for remote, real-time measurement of bridge deflection. The system configuration, fundamental principles, and measuring procedures of the video deflectometer are first described. To address the challenge of remote and accurate deflection measurement of large engineering structures without being affected by ambient light, the novel idea of active imaging, which combines high-brightness monochromatic LED targets with coupled bandpass filter imaging, is introduced. Then, to examine the measurement accuracy of the proposed advanced video deflectometer in outdoor environments, vertical motions of an LED target with precisely-controlled translations were measured and compared with prescribed values. Finally, by tracking six LED targets mounted on the bridge, the developed video deflectometer was applied for field, remote, and multipoint deflection measurement of the Wuhan Yangtze River Bridge, one of the most prestigious and most publicized constructions in China, during its routine safety evaluation tests. Since the proposed video deflectometer using actively illuminated LED targets offers prominent merits of remote, contactless, real-time, and multipoint deflection measurement with strong robustness against ambient light changes, it has great potential in the routine safety evaluation of various bridges and other large-scale engineering structures.