Cargando…
A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation
This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An...
Autores principales: | Vargas-Meléndez, Leandro, Boada, Beatriz L., Boada, María Jesús L., Gauchía, Antonio, Díaz, Vicente |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038678/ https://www.ncbi.nlm.nih.gov/pubmed/27589763 http://dx.doi.org/10.3390/s16091400 |
Ejemplares similares
-
Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States
por: Vargas-Melendez, Leandro, et al.
Publicado: (2017) -
Design of Low-Cost Vehicle Roll Angle Estimator Based on Kalman Filters and an IoT Architecture
por: Garcia Guzman, Javier, et al.
Publicado: (2018) -
Simultaneous Estimation of Vehicle Roll and Sideslip Angles through a Deep Learning Approach
por: González, Lisardo Prieto, et al.
Publicado: (2020) -
LMI-Based H(∞) Controller of Vehicle Roll Stability Control Systems with Input and Output Delays
por: Redondo, Jonatan Pajares, et al.
Publicado: (2021) -
Estimating the Roll Angle for a Two-Wheeled Single-Track Vehicle Using a Kalman Filter
por: Chuang, Tzu-Yi, et al.
Publicado: (2022)