Cargando…

Enhancement of Kinematic Accelerations by Wavenumber Correlation Filtering

To obtain kinematic accelerations with high accuracy and reliability, multiple Global Positioning System (GPS) receivers with a single antenna can be used for airborne gravimetry. The data collected from each receiver can be processed for kinematic accelerations that may be combined using simple ave...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Chang-Ki, Kwon, Jay Hyoun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038712/
https://www.ncbi.nlm.nih.gov/pubmed/27608026
http://dx.doi.org/10.3390/s16091434
Descripción
Sumario:To obtain kinematic accelerations with high accuracy and reliability, multiple Global Positioning System (GPS) receivers with a single antenna can be used for airborne gravimetry. The data collected from each receiver can be processed for kinematic accelerations that may be combined using simple averaging. Here, however, uncorrelated errors from instrument errors in each receiver also will be included that degrade the final solutions. Therefore, in this study, the wavenumber correlation filter (WCF) is applied to extract only the higher positively correlated wavenumber components of the kinematic accelerations for the enhancement of the final solution. The in situ airborne GPS data from two receivers were wavenumber-correlation-filtered to show about 0.07835 Gal improvement in accuracy relative to the solution from the raw kinematic accelerations.