Cargando…
Real-Time Tracking Framework with Adaptive Features and Constrained Labels
This paper proposes a novel tracking framework with adaptive features and constrained labels (AFCL) to handle illumination variation, occlusion and appearance changes caused by the variation of positions. The novel ensemble classifier, including the Forward–Backward error and the location constraint...
Autores principales: | Li, Daqun, Xu, Tingfa, Chen, Shuoyang, Zhang, Jizhou, Jiang, Shenwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038727/ https://www.ncbi.nlm.nih.gov/pubmed/27618052 http://dx.doi.org/10.3390/s16091449 |
Ejemplares similares
-
Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder
por: Chen, Shuoyang, et al.
Publicado: (2016) -
A Hierarchical Framework Combining Motion and Feature Information for Infrared-Visible Video Registration
por: Sun, Xinglong, et al.
Publicado: (2017) -
A Reliable and Real-Time Tracking Method with Color Distribution
por: Zhao, Zishu, et al.
Publicado: (2017) -
Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature
por: Li, Yuankun, et al.
Publicado: (2018) -
An Automatic Multi-Target Independent Analysis Framework for Non-Planar Infrared-Visible Registration
por: Sun, Xinglong, et al.
Publicado: (2017)