Cargando…
Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot
A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO)...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038736/ https://www.ncbi.nlm.nih.gov/pubmed/27618062 http://dx.doi.org/10.3390/s16091458 |
_version_ | 1782455940855889920 |
---|---|
author | Amador-Angulo, Leticia Mendoza, Olivia Castro, Juan R. Rodríguez-Díaz, Antonio Melin, Patricia Castillo, Oscar |
author_facet | Amador-Angulo, Leticia Mendoza, Olivia Castro, Juan R. Rodríguez-Díaz, Antonio Melin, Patricia Castillo, Oscar |
author_sort | Amador-Angulo, Leticia |
collection | PubMed |
description | A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. |
format | Online Article Text |
id | pubmed-5038736 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50387362016-09-29 Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot Amador-Angulo, Leticia Mendoza, Olivia Castro, Juan R. Rodríguez-Díaz, Antonio Melin, Patricia Castillo, Oscar Sensors (Basel) Article A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. MDPI 2016-09-09 /pmc/articles/PMC5038736/ /pubmed/27618062 http://dx.doi.org/10.3390/s16091458 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Amador-Angulo, Leticia Mendoza, Olivia Castro, Juan R. Rodríguez-Díaz, Antonio Melin, Patricia Castillo, Oscar Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot |
title | Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot |
title_full | Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot |
title_fullStr | Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot |
title_full_unstemmed | Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot |
title_short | Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot |
title_sort | fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038736/ https://www.ncbi.nlm.nih.gov/pubmed/27618062 http://dx.doi.org/10.3390/s16091458 |
work_keys_str_mv | AT amadoranguloleticia fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot AT mendozaolivia fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot AT castrojuanr fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot AT rodriguezdiazantonio fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot AT melinpatricia fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot AT castillooscar fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot |