Cargando…

Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot

A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO)...

Descripción completa

Detalles Bibliográficos
Autores principales: Amador-Angulo, Leticia, Mendoza, Olivia, Castro, Juan R., Rodríguez-Díaz, Antonio, Melin, Patricia, Castillo, Oscar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038736/
https://www.ncbi.nlm.nih.gov/pubmed/27618062
http://dx.doi.org/10.3390/s16091458
_version_ 1782455940855889920
author Amador-Angulo, Leticia
Mendoza, Olivia
Castro, Juan R.
Rodríguez-Díaz, Antonio
Melin, Patricia
Castillo, Oscar
author_facet Amador-Angulo, Leticia
Mendoza, Olivia
Castro, Juan R.
Rodríguez-Díaz, Antonio
Melin, Patricia
Castillo, Oscar
author_sort Amador-Angulo, Leticia
collection PubMed
description A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm.
format Online
Article
Text
id pubmed-5038736
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-50387362016-09-29 Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot Amador-Angulo, Leticia Mendoza, Olivia Castro, Juan R. Rodríguez-Díaz, Antonio Melin, Patricia Castillo, Oscar Sensors (Basel) Article A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. MDPI 2016-09-09 /pmc/articles/PMC5038736/ /pubmed/27618062 http://dx.doi.org/10.3390/s16091458 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Amador-Angulo, Leticia
Mendoza, Olivia
Castro, Juan R.
Rodríguez-Díaz, Antonio
Melin, Patricia
Castillo, Oscar
Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot
title Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot
title_full Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot
title_fullStr Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot
title_full_unstemmed Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot
title_short Fuzzy Sets in Dynamic Adaptation of Parameters of a Bee Colony Optimization for Controlling the Trajectory of an Autonomous Mobile Robot
title_sort fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038736/
https://www.ncbi.nlm.nih.gov/pubmed/27618062
http://dx.doi.org/10.3390/s16091458
work_keys_str_mv AT amadoranguloleticia fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot
AT mendozaolivia fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot
AT castrojuanr fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot
AT rodriguezdiazantonio fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot
AT melinpatricia fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot
AT castillooscar fuzzysetsindynamicadaptationofparametersofabeecolonyoptimizationforcontrollingthetrajectoryofanautonomousmobilerobot