Cargando…
A Sparsity-Promoted Decomposition for Compressed Fault Diagnosis of Roller Bearings
The traditional approaches for condition monitoring of roller bearings are almost always achieved under Shannon sampling theorem conditions, leading to a big-data problem. The compressed sensing (CS) theory provides a new solution to the big-data problem. However, the vibration signals are insuffici...
Autores principales: | Wang, Huaqing, Ke, Yanliang, Song, Liuyang, Tang, Gang, Chen, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038797/ https://www.ncbi.nlm.nih.gov/pubmed/27657063 http://dx.doi.org/10.3390/s16091524 |
Ejemplares similares
-
Diagnosis of Compound Fault Using Sparsity Promoted-Based Sparse Component Analysis
por: Hao, Yansong, et al.
Publicado: (2017) -
Underdetermined Blind Source Separation with Variational Mode Decomposition for Compound Roller Bearing Fault Signals
por: Tang, Gang, et al.
Publicado: (2016) -
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement
por: Ren, Bangyue, et al.
Publicado: (2018) -
Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals
por: Tang, Gang, et al.
Publicado: (2015) -
Roller Bearing Fault Diagnosis Based on Nonlinear Redundant Lifting Wavelet Packet Analysis
por: Gao, Lixin, et al.
Publicado: (2010)