Cargando…
Virulence, Antimicrobial Resistance Properties and Phylogenetic Background of Non-H7 Enteropathogenic Escherichia coli O157
Escherichia coli (E.coli) O157 that do not produce Shiga toxin and do not possess flagellar antigen H7 are of diverse H serotypes. In this study, the antibiotic resistance properties, genotype of a set of virulence associated genes and the phylogenetic background of E. coli O157:non-H7 groups were c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039186/ https://www.ncbi.nlm.nih.gov/pubmed/27733849 http://dx.doi.org/10.3389/fmicb.2016.01540 |
Sumario: | Escherichia coli (E.coli) O157 that do not produce Shiga toxin and do not possess flagellar antigen H7 are of diverse H serotypes. In this study, the antibiotic resistance properties, genotype of a set of virulence associated genes and the phylogenetic background of E. coli O157:non-H7 groups were compared. Whole genome sequencing was performed on fourteen O157:non-H7 isolates collected in the STEC-ID-net study. The genomes were compared with E. coli O157 genomes and a typical Enteropathogenic E. coli (tEPEC) genome downloaded from NCBI. Twenty-six (86%) of the analyzed genomes had the intimin encoding gene eae but of different types mostly correlating with their H types, e.g., H16, H26, H39, and H45 carried intimin type ε, β, κ, and α, respectively. They belonged to several E. coli phylogenetic groups, i.e., to phylogenetic group A, B1, B2, and D. Seven (50%) of our collected O157:non-H7 isolates were resistant to two or more antibiotics. Several mobile genetic elements, such as plasmids, insertion elements, and pathogenicity islands, carrying a set of virulence and resistance genes were found in the E. coli O157:non-H7 isolates. Core genome phylogenetic analysis showed that O157:non-H7 isolates probably evolved from different phylogenetic lineages and were distantly related to the E. coli O157:H7 lineage. We hypothesize that independent acquisition of mobile genetic elements by isolates of different lineages have contributed to the different molecular features of the O157:non-H7 strains. Although distantly related to the STEC O157, E. coli O157:non-H7 isolates from multiple genetic background could be considered as pathogen of concern for their diverse virulence and antibiotic resistance properties. |
---|