Cargando…

Global change, life‐history complexity and the potential for evolutionary rescue

Most organisms have complex life cycles, and in marine taxa, larval life‐history stages tend to be more sensitive to environmental stress than adult (reproductive) life‐history stages. While there are several models of stage‐specific adaptation across the life history, the extent to which differenti...

Descripción completa

Detalles Bibliográficos
Autores principales: Marshall, Dustin J., Burgess, Scott C., Connallon, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039331/
https://www.ncbi.nlm.nih.gov/pubmed/27695526
http://dx.doi.org/10.1111/eva.12396
Descripción
Sumario:Most organisms have complex life cycles, and in marine taxa, larval life‐history stages tend to be more sensitive to environmental stress than adult (reproductive) life‐history stages. While there are several models of stage‐specific adaptation across the life history, the extent to which differential sensitivity to environmental stress (defined here as reductions in absolute fitness across the life history) affects the tempo of adaptive evolution to change remains unclear. We used a heuristic model to explore how commonly observed features associated with marine complex life histories alter a population's capacity to cope with environmental change. We found that increasing the complexity of the life history generally reduces the evolutionary potential of taxa to cope with environmental change. Our model also predicted that genetic correlations in stress tolerance between stages, levels of genetic variance in each stage, and the relative plasticity of different stages, all interact to affect the maximum rate of environmental change that will permit species persistence. Our results suggest that marine organisms with complex life cycles are particularly vulnerable to anthropogenic global change, but we lack empirical estimates of key parameters for most species.