Cargando…
The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution
Human antioxidant protein 1 (Atox1) is a small cytosolic protein with an essential role in copper homeostasis. Atox1 functions as a copper carrier facilitating copper transfer to the secretory pathway. This process is required for activation of copper dependent enzymes involved in neurotransmitter b...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039574/ https://www.ncbi.nlm.nih.gov/pubmed/27472369 http://dx.doi.org/10.3390/antiox5030025 |
_version_ | 1782456086013411328 |
---|---|
author | Hatori, Yuta Lutsenko, Svetlana |
author_facet | Hatori, Yuta Lutsenko, Svetlana |
author_sort | Hatori, Yuta |
collection | PubMed |
description | Human antioxidant protein 1 (Atox1) is a small cytosolic protein with an essential role in copper homeostasis. Atox1 functions as a copper carrier facilitating copper transfer to the secretory pathway. This process is required for activation of copper dependent enzymes involved in neurotransmitter biosynthesis, iron efflux, neovascularization, wound healing, and regulation of blood pressure. Recently, new cellular roles for Atox1 have emerged. Changing levels of Atox1 were shown to modulate response to cancer therapies, contribute to inflammatory response, and protect cells against various oxidative stresses. It has also become apparent that the activity of Atox1 is tightly linked to the cellular redox status. In this review, we summarize biochemical information related to a dual role of Atox1 as a copper chaperone and an antioxidant. We discuss how these two activities could be linked and contribute to establishing the intracellular copper balance and functional identity of cells during differentiation. |
format | Online Article Text |
id | pubmed-5039574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50395742016-10-04 The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution Hatori, Yuta Lutsenko, Svetlana Antioxidants (Basel) Review Human antioxidant protein 1 (Atox1) is a small cytosolic protein with an essential role in copper homeostasis. Atox1 functions as a copper carrier facilitating copper transfer to the secretory pathway. This process is required for activation of copper dependent enzymes involved in neurotransmitter biosynthesis, iron efflux, neovascularization, wound healing, and regulation of blood pressure. Recently, new cellular roles for Atox1 have emerged. Changing levels of Atox1 were shown to modulate response to cancer therapies, contribute to inflammatory response, and protect cells against various oxidative stresses. It has also become apparent that the activity of Atox1 is tightly linked to the cellular redox status. In this review, we summarize biochemical information related to a dual role of Atox1 as a copper chaperone and an antioxidant. We discuss how these two activities could be linked and contribute to establishing the intracellular copper balance and functional identity of cells during differentiation. MDPI 2016-07-27 /pmc/articles/PMC5039574/ /pubmed/27472369 http://dx.doi.org/10.3390/antiox5030025 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Hatori, Yuta Lutsenko, Svetlana The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution |
title | The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution |
title_full | The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution |
title_fullStr | The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution |
title_full_unstemmed | The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution |
title_short | The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution |
title_sort | role of copper chaperone atox1 in coupling redox homeostasis to intracellular copper distribution |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039574/ https://www.ncbi.nlm.nih.gov/pubmed/27472369 http://dx.doi.org/10.3390/antiox5030025 |
work_keys_str_mv | AT hatoriyuta theroleofcopperchaperoneatox1incouplingredoxhomeostasistointracellularcopperdistribution AT lutsenkosvetlana theroleofcopperchaperoneatox1incouplingredoxhomeostasistointracellularcopperdistribution AT hatoriyuta roleofcopperchaperoneatox1incouplingredoxhomeostasistointracellularcopperdistribution AT lutsenkosvetlana roleofcopperchaperoneatox1incouplingredoxhomeostasistointracellularcopperdistribution |