Cargando…
Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies
Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low ac...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039653/ https://www.ncbi.nlm.nih.gov/pubmed/27399790 http://dx.doi.org/10.3390/bios6030034 |
_version_ | 1782456103989149696 |
---|---|
author | Ta, Duy Tien Guedens, Wanda Vranken, Tom Vanschoenbeek, Katrijn Steen Redeker, Erik Michiels, Luc Adriaensens, Peter |
author_facet | Ta, Duy Tien Guedens, Wanda Vranken, Tom Vanschoenbeek, Katrijn Steen Redeker, Erik Michiels, Luc Adriaensens, Peter |
author_sort | Ta, Duy Tien |
collection | PubMed |
description | Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL). Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms. |
format | Online Article Text |
id | pubmed-5039653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-50396532016-10-04 Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies Ta, Duy Tien Guedens, Wanda Vranken, Tom Vanschoenbeek, Katrijn Steen Redeker, Erik Michiels, Luc Adriaensens, Peter Biosensors (Basel) Article Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids) usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1), an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL). Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR), respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms. MDPI 2016-07-05 /pmc/articles/PMC5039653/ /pubmed/27399790 http://dx.doi.org/10.3390/bios6030034 Text en © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ta, Duy Tien Guedens, Wanda Vranken, Tom Vanschoenbeek, Katrijn Steen Redeker, Erik Michiels, Luc Adriaensens, Peter Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies |
title | Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies |
title_full | Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies |
title_fullStr | Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies |
title_full_unstemmed | Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies |
title_short | Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies |
title_sort | enhanced biosensor platforms for detecting the atherosclerotic biomarker vcam1 based on bioconjugation with uniformly oriented vcam1-targeting nanobodies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039653/ https://www.ncbi.nlm.nih.gov/pubmed/27399790 http://dx.doi.org/10.3390/bios6030034 |
work_keys_str_mv | AT taduytien enhancedbiosensorplatformsfordetectingtheatheroscleroticbiomarkervcam1basedonbioconjugationwithuniformlyorientedvcam1targetingnanobodies AT guedenswanda enhancedbiosensorplatformsfordetectingtheatheroscleroticbiomarkervcam1basedonbioconjugationwithuniformlyorientedvcam1targetingnanobodies AT vrankentom enhancedbiosensorplatformsfordetectingtheatheroscleroticbiomarkervcam1basedonbioconjugationwithuniformlyorientedvcam1targetingnanobodies AT vanschoenbeekkatrijn enhancedbiosensorplatformsfordetectingtheatheroscleroticbiomarkervcam1basedonbioconjugationwithuniformlyorientedvcam1targetingnanobodies AT steenredekererik enhancedbiosensorplatformsfordetectingtheatheroscleroticbiomarkervcam1basedonbioconjugationwithuniformlyorientedvcam1targetingnanobodies AT michielsluc enhancedbiosensorplatformsfordetectingtheatheroscleroticbiomarkervcam1basedonbioconjugationwithuniformlyorientedvcam1targetingnanobodies AT adriaensenspeter enhancedbiosensorplatformsfordetectingtheatheroscleroticbiomarkervcam1basedonbioconjugationwithuniformlyorientedvcam1targetingnanobodies |