Cargando…
Inferring the perturbation time from biological time course data
Motivation: Time course data are often used to study the changes to a biological process after perturbation. Statistical methods have been developed to determine whether such a perturbation induces changes over time, e.g. comparing a perturbed and unperturbed time course dataset to uncover differenc...
Autores principales: | Yang, Jing, Penfold, Christopher A., Grant, Murray R., Rattray, Magnus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039917/ https://www.ncbi.nlm.nih.gov/pubmed/27288495 http://dx.doi.org/10.1093/bioinformatics/btw329 |
Ejemplares similares
-
Network inference from perturbation time course data
por: Sarmah, Deepraj, et al.
Publicado: (2022) -
Scalable inference of transcriptional kinetic parameters from MS2 time series data
por: Bowles, Jonathan R, et al.
Publicado: (2021) -
Branch-recombinant Gaussian processes for analysis of perturbations in biological time series
por: Penfold, Christopher A, et al.
Publicado: (2018) -
Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data
por: wa Maina, Ciira, et al.
Publicado: (2014) -
Dynamic probabilistic threshold networks to infer signaling pathways from time-course perturbation data
por: Kiani, Narsis A, et al.
Publicado: (2014)