Cargando…
Pseudotime estimation: deconfounding single cell time series
Motivation: Repeated cross-sectional time series single cell data confound several sources of variation, with contributions from measurement noise, stochastic cell-to-cell variation and cell progression at different rates. Time series from single cell assays are particularly susceptible to confoundi...
Autores principales: | Reid, John E., Wernisch, Lorenz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039927/ https://www.ncbi.nlm.nih.gov/pubmed/27318198 http://dx.doi.org/10.1093/bioinformatics/btw372 |
Ejemplares similares
-
psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data
por: Macnair, Will, et al.
Publicado: (2022) -
Deconfounded Dimension Reduction via Partial Embeddings
por: Chen, Andrew A., et al.
Publicado: (2023) -
A descriptive marker gene approach to single-cell pseudotime inference
por: Campbell, Kieran R, et al.
Publicado: (2019) -
Variational Temporal Deconfounder for Individualized Treatment Effect Estimation with Longitudinal Observational Data
por: Feng, Zheng, et al.
Publicado: (2023) -
CCPE: cell cycle pseudotime estimation for single cell RNA-seq data
por: Liu, Jiajia, et al.
Publicado: (2021)