Cargando…

Spatial Prediction and Optimized Sampling Design for Sodium Concentration in Groundwater

Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated f...

Descripción completa

Detalles Bibliográficos
Autores principales: Zahid, Erum, Hussain, Ijaz, Spöck, Gunter, Faisal, Muhammad, Shabbir, Javid, M. AbdEl-Salam, Nasser, Hussain, Tajammal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5040421/
https://www.ncbi.nlm.nih.gov/pubmed/27683016
http://dx.doi.org/10.1371/journal.pone.0161810
Descripción
Sumario:Sodium is an integral part of water, and its excessive amount in drinking water causes high blood pressure and hypertension. In the present paper, spatial distribution of sodium concentration in drinking water is modeled and optimized sampling designs for selecting sampling locations is calculated for three divisions in Punjab, Pakistan. Universal kriging and Bayesian universal kriging are used to predict the sodium concentrations. Spatial simulated annealing is used to generate optimized sampling designs. Different estimation methods (i.e., maximum likelihood, restricted maximum likelihood, ordinary least squares, and weighted least squares) are used to estimate the parameters of the variogram model (i.e, exponential, Gaussian, spherical and cubic). It is concluded that Bayesian universal kriging fits better than universal kriging. It is also observed that the universal kriging predictor provides minimum mean universal kriging variance for both adding and deleting locations during sampling design.