Cargando…
Weighted-SAMGSR: combining significance analysis of microarray-gene set reduction algorithm with pathway topology-based weights to select relevant genes
BACKGROUND: It has been demonstrated that a pathway-based feature selection method that incorporates biological information within pathways during the process of feature selection usually outperforms a gene-based feature selection algorithm in terms of predictive accuracy and stability. Significance...
Autores principales: | Tian, Suyan, Chang, Howard H., Wang, Chi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041498/ https://www.ncbi.nlm.nih.gov/pubmed/27681389 http://dx.doi.org/10.1186/s13062-016-0152-3 |
Ejemplares similares
-
Classification of Non-Small Cell Lung Cancer Using Significance Analysis of Microarray-Gene Set Reduction Algorithm
por: Zhang, Lei, et al.
Publicado: (2016) -
Corrigendum to “Classification of Non-Small Cell Lung Cancer Using Significance Analysis of Microarray-Gene Set Reduction Algorithm”
por: Zhang, Lei, et al.
Publicado: (2018) -
To select relevant features for longitudinal gene expression data by extending a pathway analysis method
por: Tian, Suyan, et al.
Publicado: (2018) -
A longitudinal feature selection method identifies relevant genes to distinguish complicated injury and uncomplicated injury over time
por: Tian, Suyan, et al.
Publicado: (2018) -
Identification of prognostic genes and gene sets for early-stage non-small cell lung cancer using bi-level selection methods
por: Tian, Suyan, et al.
Publicado: (2017)