Cargando…
A naturally-occurring ‘cold earth’ spot in Northern China
Permafrost is determined to a large extent by the Earth’s surface temperature, therefore it distributes mainly in high altitude and latitude regions. However, stable, warm (about −1 °C) permafrost occurs within a scree slope in northern China that is more than 600 km south of the southernmost limit...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5041580/ https://www.ncbi.nlm.nih.gov/pubmed/27685441 http://dx.doi.org/10.1038/srep34184 |
Sumario: | Permafrost is determined to a large extent by the Earth’s surface temperature, therefore it distributes mainly in high altitude and latitude regions. However, stable, warm (about −1 °C) permafrost occurs within a scree slope in northern China that is more than 600 km south of the southernmost limit of latitudinal permafrost on the Eurasian Continent. It is at an elevation of only 900 m above sea level (ASL). The area has a mean annual air temperature (MAAT) of 6 to 8 °C. Thermal processes of the scree slope, investigated through field monitoring and numerical simulation, showed that the permafrost is caused by winter air convection within the porous rock deposits and is stable as air convection does not occur in summer time. The deposit is covered by a 30-cm-thick peaty soil layer dated (carbon C-14) to between 1,000 to 1,600 years ago. The layer also contributes to the permafrost’s existence due to the peat’s thermal conductivity offset when frozen and thawed. The existence of permafrost under such warm climatic conditions confirms the effectiveness of using crushed rock layer as basement or slope cover to protect the warm permafrost subgrade of the recently-constructed Qinghai-Tibet Railway (QTR), even under the predicted climate warming conditions. |
---|