Cargando…

Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma

The non-classical human leukocyte antigen G (HLA-G) is expressed at a high frequency in renal cell carcinoma (RCC) and is associated with a higher tumor grade and a poor clinical outcome. This might be caused by the HLA-G-mediated inhibition of the cytotoxicity of T and NK cells. Therefore a selecti...

Descripción completa

Detalles Bibliográficos
Autores principales: Jasinski-Bergner, Simon, Reches, Adi, Stoehr, Christine, Massa, Chiara, Gonschorek, Evamaria, Huettelmaier, Stefan, Braun, Juliane, Wach, Sven, Wullich, Bernd, Spath, Verena, Wang, Ena, Marincola, Francesco M., Mandelboim, Ofer, Hartmann, Arndt, Seliger, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042021/
https://www.ncbi.nlm.nih.gov/pubmed/27057628
http://dx.doi.org/10.18632/oncotarget.8567
Descripción
Sumario:The non-classical human leukocyte antigen G (HLA-G) is expressed at a high frequency in renal cell carcinoma (RCC) and is associated with a higher tumor grade and a poor clinical outcome. This might be caused by the HLA-G-mediated inhibition of the cytotoxicity of T and NK cells. Therefore a selective targeting of HLA-G might represent a powerful strategy to enhance the immunogenicity of RCC lesions. Recent studies identified a number of HLA-G-regulating microRNAs (miRs) and demonstrated an inverse expression of some of these miRs with HLA-G in RCC in vitro and in vivo. However, it was postulated that further miRs might exist contributing to the tightly controlled selective HLA-G expression. By application of a miR enrichment assay (miTRAP) in combination with in silico profiling two novel HLA-G-regulatory miRs, miR-548q and miR-628-5p, were identified. Direct interactions of both miRs with the 3′ untranslated region of HLA-G were confirmed with luciferase reporter gene assays. In addition, qPCR analyses and immunohistochemical staining revealed an inverse, expression of miR-628-5p, but not of miR-548q to the HLA-G protein in primary RCC lesions and cell lines. Stable overexpression of miR-548q and miR-628-5p caused a downregulation of HLA-G mRNA and protein. This leads in case of miR-548q to an enhanced NK cell-mediated HLA-G-dependent cytotoxicity, which could be reverted by ILT2 blockade suggesting a control of the immune effector cell activity at least by this miR. The identification of two novel HLA-G-regulatory miRs extends the number of HLA-G-relevant miRs tuning the HLA-G expression and might serve as future therapeutic targets.