Cargando…
Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells
The testing of candidate drugs to slow progression of Alzheimer’s disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) hum...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042502/ https://www.ncbi.nlm.nih.gov/pubmed/27684569 http://dx.doi.org/10.1371/journal.pone.0163072 |
_version_ | 1782456603077771264 |
---|---|
author | Lee, Han-Kyu Velazquez Sanchez, Clara Chen, Mei Morin, Peter J. Wells, John M. Hanlon, Eugene B. Xia, Weiming |
author_facet | Lee, Han-Kyu Velazquez Sanchez, Clara Chen, Mei Morin, Peter J. Wells, John M. Hanlon, Eugene B. Xia, Weiming |
author_sort | Lee, Han-Kyu |
collection | PubMed |
description | The testing of candidate drugs to slow progression of Alzheimer’s disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells (iPSC) derived from AD subjects. We created iPSC from blood cells of five AD patients and differentiated them into 3D human neuronal culture. We characterized neuronal markers of our 3D neurons by immunocytochemical staining to validate the differentiation status. To block the generation of pathologic amyloid β peptides (Aβ), the 3D-differentiated AD neurons were treated with inhibitors targeting β-secretase (BACE1) and γ-secretases. As predicted, both BACE1 and γ-secretase inhibitors dramatically decreased Aβ generation in iPSC-derived neural cells derived from all five AD patients, under standard two-dimensional (2D) differentiation conditions. However, BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels in neural cells differentiated under 3D culture conditions. Interestingly, in a single subject AD1, we found that BACE1 inhibitor treatment was not able to significantly reduce Aβ42 levels. To investigate underlying molecular mechanisms, we performed proteomic analysis of 3D AD human neuronal cultures including AD1. Proteomic analysis revealed specific reduction of several proteins that might contribute to a poor inhibition of BACE1 in subject AD1. To our knowledge, this is the first iPSC-differentiated 3D neuro-spheroid model derived from AD patients’ blood. Our results demonstrate that our 3D human neuro-spheroid model can be a physiologically relevant and valid model for testing efficacy of AD drug. |
format | Online Article Text |
id | pubmed-5042502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50425022016-10-27 Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells Lee, Han-Kyu Velazquez Sanchez, Clara Chen, Mei Morin, Peter J. Wells, John M. Hanlon, Eugene B. Xia, Weiming PLoS One Research Article The testing of candidate drugs to slow progression of Alzheimer’s disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells (iPSC) derived from AD subjects. We created iPSC from blood cells of five AD patients and differentiated them into 3D human neuronal culture. We characterized neuronal markers of our 3D neurons by immunocytochemical staining to validate the differentiation status. To block the generation of pathologic amyloid β peptides (Aβ), the 3D-differentiated AD neurons were treated with inhibitors targeting β-secretase (BACE1) and γ-secretases. As predicted, both BACE1 and γ-secretase inhibitors dramatically decreased Aβ generation in iPSC-derived neural cells derived from all five AD patients, under standard two-dimensional (2D) differentiation conditions. However, BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels in neural cells differentiated under 3D culture conditions. Interestingly, in a single subject AD1, we found that BACE1 inhibitor treatment was not able to significantly reduce Aβ42 levels. To investigate underlying molecular mechanisms, we performed proteomic analysis of 3D AD human neuronal cultures including AD1. Proteomic analysis revealed specific reduction of several proteins that might contribute to a poor inhibition of BACE1 in subject AD1. To our knowledge, this is the first iPSC-differentiated 3D neuro-spheroid model derived from AD patients’ blood. Our results demonstrate that our 3D human neuro-spheroid model can be a physiologically relevant and valid model for testing efficacy of AD drug. Public Library of Science 2016-09-29 /pmc/articles/PMC5042502/ /pubmed/27684569 http://dx.doi.org/10.1371/journal.pone.0163072 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Lee, Han-Kyu Velazquez Sanchez, Clara Chen, Mei Morin, Peter J. Wells, John M. Hanlon, Eugene B. Xia, Weiming Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells |
title | Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells |
title_full | Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells |
title_fullStr | Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells |
title_full_unstemmed | Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells |
title_short | Three Dimensional Human Neuro-Spheroid Model of Alzheimer’s Disease Based on Differentiated Induced Pluripotent Stem Cells |
title_sort | three dimensional human neuro-spheroid model of alzheimer’s disease based on differentiated induced pluripotent stem cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042502/ https://www.ncbi.nlm.nih.gov/pubmed/27684569 http://dx.doi.org/10.1371/journal.pone.0163072 |
work_keys_str_mv | AT leehankyu threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT velazquezsanchezclara threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT chenmei threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT morinpeterj threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT wellsjohnm threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT hanloneugeneb threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells AT xiaweiming threedimensionalhumanneurospheroidmodelofalzheimersdiseasebasedondifferentiatedinducedpluripotentstemcells |