Cargando…
Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response
BACKGROUND & AIMS: Netrin-1, a multifunctional secreted protein, is up-regulated in cancer and inflammation. Netrin-1 blocks apoptosis induced by the prototypical dependence receptors deleted in colorectal carcinoma and uncoordinated phenotype-5. Although the unfolded protein response (UPR) trig...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042567/ https://www.ncbi.nlm.nih.gov/pubmed/28174720 http://dx.doi.org/10.1016/j.jcmgh.2015.12.011 |
_version_ | 1782456617540780032 |
---|---|
author | Lahlali, Thomas Plissonnier, Marie-Laure Romero-López, Cristina Michelet, Maud Ducarouge, Benjamin Berzal-Herranz, Alfredo Zoulim, Fabien Mehlen, Patrick Parent, Romain |
author_facet | Lahlali, Thomas Plissonnier, Marie-Laure Romero-López, Cristina Michelet, Maud Ducarouge, Benjamin Berzal-Herranz, Alfredo Zoulim, Fabien Mehlen, Patrick Parent, Romain |
author_sort | Lahlali, Thomas |
collection | PubMed |
description | BACKGROUND & AIMS: Netrin-1, a multifunctional secreted protein, is up-regulated in cancer and inflammation. Netrin-1 blocks apoptosis induced by the prototypical dependence receptors deleted in colorectal carcinoma and uncoordinated phenotype-5. Although the unfolded protein response (UPR) triggers apoptosis on exposure to stress, it first attempts to restore endoplasmic reticulum homeostasis to foster cell survival. Importantly, UPR is implicated in chronic liver conditions including hepatic oncogenesis. Netrin-1's implication in cell survival on UPR in this context is unknown. METHODS: Isolation of translational complexes, determination of RNA secondary structures by selective 2’-hydroxyl acylation and primer extension/dimethyl sulfate, bicistronic constructs, as well as conventional cell biology and biochemistry approaches were used on in vitro–grown hepatocytic cells, wild-type, and netrin-1 transgenic mice. RESULTS: HepaRG cells constitute a bona fide model for UPR studies in vitro through adequate activation of the 3 sensors of the UPR (protein kinase RNA–like endoplasmic reticulum kinase (PERK)), inositol requiring enzyme 1α (IRE1α), and activated transcription factor 6 (ATF6). The netrin-1 messenger RNA 5'-end was shown to fold into a complex double pseudoknot and bear E-loop motifs, both of which are representative hallmarks of related internal ribosome entry site regions. Cap-independent translation of netrin 5' untranslated region–driven luciferase was observed on UPR in vitro. Unlike several structurally related oncogenic transcripts (l-myc, c-myc, c-myb), netrin-1 messenger RNA was selected for translation during UPR both in human hepatocytes and in mice livers. Depletion of netrin-1 during UPR induces apoptosis, leading to cell death through an uncoordinated phenotype-5A/C–mediated involvement of protein phosphatase 2A and death-associated protein kinase 1 in vitro and in netrin transgenic mice. CONCLUSIONS: UPR-resistant, internal ribosome entry site–driven netrin-1 translation leads to the inhibition of uncoordinated phenotype-5/death-associated protein kinase 1–mediated apoptosis in the hepatic context during UPR, a hallmark of chronic liver disease. |
format | Online Article Text |
id | pubmed-5042567 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-50425672017-02-07 Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response Lahlali, Thomas Plissonnier, Marie-Laure Romero-López, Cristina Michelet, Maud Ducarouge, Benjamin Berzal-Herranz, Alfredo Zoulim, Fabien Mehlen, Patrick Parent, Romain Cell Mol Gastroenterol Hepatol Original Research BACKGROUND & AIMS: Netrin-1, a multifunctional secreted protein, is up-regulated in cancer and inflammation. Netrin-1 blocks apoptosis induced by the prototypical dependence receptors deleted in colorectal carcinoma and uncoordinated phenotype-5. Although the unfolded protein response (UPR) triggers apoptosis on exposure to stress, it first attempts to restore endoplasmic reticulum homeostasis to foster cell survival. Importantly, UPR is implicated in chronic liver conditions including hepatic oncogenesis. Netrin-1's implication in cell survival on UPR in this context is unknown. METHODS: Isolation of translational complexes, determination of RNA secondary structures by selective 2’-hydroxyl acylation and primer extension/dimethyl sulfate, bicistronic constructs, as well as conventional cell biology and biochemistry approaches were used on in vitro–grown hepatocytic cells, wild-type, and netrin-1 transgenic mice. RESULTS: HepaRG cells constitute a bona fide model for UPR studies in vitro through adequate activation of the 3 sensors of the UPR (protein kinase RNA–like endoplasmic reticulum kinase (PERK)), inositol requiring enzyme 1α (IRE1α), and activated transcription factor 6 (ATF6). The netrin-1 messenger RNA 5'-end was shown to fold into a complex double pseudoknot and bear E-loop motifs, both of which are representative hallmarks of related internal ribosome entry site regions. Cap-independent translation of netrin 5' untranslated region–driven luciferase was observed on UPR in vitro. Unlike several structurally related oncogenic transcripts (l-myc, c-myc, c-myb), netrin-1 messenger RNA was selected for translation during UPR both in human hepatocytes and in mice livers. Depletion of netrin-1 during UPR induces apoptosis, leading to cell death through an uncoordinated phenotype-5A/C–mediated involvement of protein phosphatase 2A and death-associated protein kinase 1 in vitro and in netrin transgenic mice. CONCLUSIONS: UPR-resistant, internal ribosome entry site–driven netrin-1 translation leads to the inhibition of uncoordinated phenotype-5/death-associated protein kinase 1–mediated apoptosis in the hepatic context during UPR, a hallmark of chronic liver disease. Elsevier 2016-01-09 /pmc/articles/PMC5042567/ /pubmed/28174720 http://dx.doi.org/10.1016/j.jcmgh.2015.12.011 Text en © 2016 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Original Research Lahlali, Thomas Plissonnier, Marie-Laure Romero-López, Cristina Michelet, Maud Ducarouge, Benjamin Berzal-Herranz, Alfredo Zoulim, Fabien Mehlen, Patrick Parent, Romain Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response |
title | Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response |
title_full | Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response |
title_fullStr | Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response |
title_full_unstemmed | Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response |
title_short | Netrin-1 Protects Hepatocytes Against Cell Death Through Sustained Translation During the Unfolded Protein Response |
title_sort | netrin-1 protects hepatocytes against cell death through sustained translation during the unfolded protein response |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042567/ https://www.ncbi.nlm.nih.gov/pubmed/28174720 http://dx.doi.org/10.1016/j.jcmgh.2015.12.011 |
work_keys_str_mv | AT lahlalithomas netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse AT plissonniermarielaure netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse AT romerolopezcristina netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse AT micheletmaud netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse AT ducarougebenjamin netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse AT berzalherranzalfredo netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse AT zoulimfabien netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse AT mehlenpatrick netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse AT parentromain netrin1protectshepatocytesagainstcelldeaththroughsustainedtranslationduringtheunfoldedproteinresponse |