Cargando…

Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish

Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluore...

Descripción completa

Detalles Bibliográficos
Autores principales: Perez-Camps, Mireia, Tian, Jing, Chng, Serene C, Sem, Kai Pin, Sudhaharan, Thankiah, Teh, Cathleen, Wachsmuth, Malte, Korzh, Vladimir, Ahmed, Sohail, Reversade, Bruno
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042653/
https://www.ncbi.nlm.nih.gov/pubmed/27684073
http://dx.doi.org/10.7554/eLife.11475
_version_ 1782456632768200704
author Perez-Camps, Mireia
Tian, Jing
Chng, Serene C
Sem, Kai Pin
Sudhaharan, Thankiah
Teh, Cathleen
Wachsmuth, Malte
Korzh, Vladimir
Ahmed, Sohail
Reversade, Bruno
author_facet Perez-Camps, Mireia
Tian, Jing
Chng, Serene C
Sem, Kai Pin
Sudhaharan, Thankiah
Teh, Cathleen
Wachsmuth, Malte
Korzh, Vladimir
Ahmed, Sohail
Reversade, Bruno
author_sort Perez-Camps, Mireia
collection PubMed
description Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001
format Online
Article
Text
id pubmed-5042653
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-50426532016-10-04 Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish Perez-Camps, Mireia Tian, Jing Chng, Serene C Sem, Kai Pin Sudhaharan, Thankiah Teh, Cathleen Wachsmuth, Malte Korzh, Vladimir Ahmed, Sohail Reversade, Bruno eLife Biophysics and Structural Biology Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001 eLife Sciences Publications, Ltd 2016-09-29 /pmc/articles/PMC5042653/ /pubmed/27684073 http://dx.doi.org/10.7554/eLife.11475 Text en © 2016, Perez-Camps et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Biophysics and Structural Biology
Perez-Camps, Mireia
Tian, Jing
Chng, Serene C
Sem, Kai Pin
Sudhaharan, Thankiah
Teh, Cathleen
Wachsmuth, Malte
Korzh, Vladimir
Ahmed, Sohail
Reversade, Bruno
Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish
title Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish
title_full Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish
title_fullStr Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish
title_full_unstemmed Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish
title_short Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish
title_sort quantitative imaging reveals real-time pou5f3–nanog complexes driving dorsoventral mesendoderm patterning in zebrafish
topic Biophysics and Structural Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042653/
https://www.ncbi.nlm.nih.gov/pubmed/27684073
http://dx.doi.org/10.7554/eLife.11475
work_keys_str_mv AT perezcampsmireia quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT tianjing quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT chngserenec quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT semkaipin quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT sudhaharanthankiah quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT tehcathleen quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT wachsmuthmalte quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT korzhvladimir quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT ahmedsohail quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish
AT reversadebruno quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish