Cargando…
Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish
Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluore...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042653/ https://www.ncbi.nlm.nih.gov/pubmed/27684073 http://dx.doi.org/10.7554/eLife.11475 |
_version_ | 1782456632768200704 |
---|---|
author | Perez-Camps, Mireia Tian, Jing Chng, Serene C Sem, Kai Pin Sudhaharan, Thankiah Teh, Cathleen Wachsmuth, Malte Korzh, Vladimir Ahmed, Sohail Reversade, Bruno |
author_facet | Perez-Camps, Mireia Tian, Jing Chng, Serene C Sem, Kai Pin Sudhaharan, Thankiah Teh, Cathleen Wachsmuth, Malte Korzh, Vladimir Ahmed, Sohail Reversade, Bruno |
author_sort | Perez-Camps, Mireia |
collection | PubMed |
description | Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001 |
format | Online Article Text |
id | pubmed-5042653 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-50426532016-10-04 Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish Perez-Camps, Mireia Tian, Jing Chng, Serene C Sem, Kai Pin Sudhaharan, Thankiah Teh, Cathleen Wachsmuth, Malte Korzh, Vladimir Ahmed, Sohail Reversade, Bruno eLife Biophysics and Structural Biology Formation of the three embryonic germ layers is a fundamental developmental process that initiates differentiation. How the zebrafish pluripotency factor Pou5f3 (homologous to mammalian Oct4) drives lineage commitment is unclear. Here, we introduce fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to assess the formation of Pou5f3 complexes with other transcription factors in real-time in gastrulating zebrafish embryos. We show, at single-cell resolution in vivo, that Pou5f3 complexes with Nanog to pattern mesendoderm differentiation at the blastula stage. Later, during gastrulation, Sox32 restricts Pou5f3–Nanog complexes to the ventrolateral mesendoderm by binding Pou5f3 or Nanog in prospective dorsal endoderm. In the ventrolateral endoderm, the Elabela / Aplnr pathway limits Sox32 levels, allowing the formation of Pou5f3–Nanog complexes and the activation of downstream BMP signaling. This quantitative model shows that a balance in the spatiotemporal distribution of Pou5f3–Nanog complexes, modulated by Sox32, regulates mesendoderm specification along the dorsoventral axis. DOI: http://dx.doi.org/10.7554/eLife.11475.001 eLife Sciences Publications, Ltd 2016-09-29 /pmc/articles/PMC5042653/ /pubmed/27684073 http://dx.doi.org/10.7554/eLife.11475 Text en © 2016, Perez-Camps et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Biophysics and Structural Biology Perez-Camps, Mireia Tian, Jing Chng, Serene C Sem, Kai Pin Sudhaharan, Thankiah Teh, Cathleen Wachsmuth, Malte Korzh, Vladimir Ahmed, Sohail Reversade, Bruno Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish |
title | Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish |
title_full | Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish |
title_fullStr | Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish |
title_full_unstemmed | Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish |
title_short | Quantitative imaging reveals real-time Pou5f3–Nanog complexes driving dorsoventral mesendoderm patterning in zebrafish |
title_sort | quantitative imaging reveals real-time pou5f3–nanog complexes driving dorsoventral mesendoderm patterning in zebrafish |
topic | Biophysics and Structural Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042653/ https://www.ncbi.nlm.nih.gov/pubmed/27684073 http://dx.doi.org/10.7554/eLife.11475 |
work_keys_str_mv | AT perezcampsmireia quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT tianjing quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT chngserenec quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT semkaipin quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT sudhaharanthankiah quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT tehcathleen quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT wachsmuthmalte quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT korzhvladimir quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT ahmedsohail quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish AT reversadebruno quantitativeimagingrevealsrealtimepou5f3nanogcomplexesdrivingdorsoventralmesendodermpatterninginzebrafish |