Cargando…

Transcription factors mediate condensin recruitment and global chromosomal organization in fission yeast

It is becoming clear that Structural Maintenance of Chromosomes (SMC) complexes, such as condensin and cohesin, are involved in the three-dimensional genome organization, yet the exact roles of these complexes in the functional organization remain unclear. This study employs the ChIA-PET approach to...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kyoung-Dong, Tanizawa, Hideki, Iwasaki, Osamu, Noma, Ken-ichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042855/
https://www.ncbi.nlm.nih.gov/pubmed/27548313
http://dx.doi.org/10.1038/ng.3647
Descripción
Sumario:It is becoming clear that Structural Maintenance of Chromosomes (SMC) complexes, such as condensin and cohesin, are involved in the three-dimensional genome organization, yet the exact roles of these complexes in the functional organization remain unclear. This study employs the ChIA-PET approach to comprehensively identify genome-wide associations mediated by condensin and cohesin in fission yeast. We find that although cohesin and condensin often bind to the same loci, they direct different association networks and generate small and larger chromatin domains, respectively. Cohesin mediates local associations between loci positioned within 100 kb; condensin can drive longer-range associations. Moreover, condensin, but not cohesin, connects cell cycle-regulated genes bound by mitotic transcription factors. This study describes the different functions of condensin and cohesin in genome organization and how specific transcription factors function in condensin loading, cell cycle-dependent genome organization, and mitotic chromosome organization to support faithful chromosome segregation.