Cargando…
Observation of orbital two-channel Kondo effect in a ferromagnetic L1(0)-MnGa film
The experimental existence and stability of the fixed point of the two-channel Kondo (2CK) effect displaying exotic non-Fermi liquid physics have been buried in persistent confusion despite the intensive theoretical and experimental efforts in past three decades. Here we report an experimental reali...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043353/ https://www.ncbi.nlm.nih.gov/pubmed/27686323 http://dx.doi.org/10.1038/srep34549 |
Sumario: | The experimental existence and stability of the fixed point of the two-channel Kondo (2CK) effect displaying exotic non-Fermi liquid physics have been buried in persistent confusion despite the intensive theoretical and experimental efforts in past three decades. Here we report an experimental realization of the two-level system resonant scattering-induced orbital 2CK effect in a ferromagnetic L1(0)-MnGa film, which is signified by a magnetic field-independent resistivity upturn that has a logarithmic and a square-root temperature dependence beyond and below the Kondo temperature of ~14.5 K, respectively. Our results not only evidence the robust existence of orbital 2CK effect even in the presence of strong magnetic fields and long-range ferromagnetic ordering, but also extend the scope of 2CK host materials from nonmagnetic nanoscale point contacts to diffusive conductors of disordered alloys. |
---|