Cargando…
Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment
Wild and domesticated bee species are exposed to a variety of pesticides which may drive pollinator decline. Due to wild bee sensitivity data shortage, it is unclear if the honey bee Apis mellifera is a suitable surrogate species in the current EU risk assessment scheme. Furthermore, the underlying...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043368/ https://www.ncbi.nlm.nih.gov/pubmed/27686060 http://dx.doi.org/10.1038/srep34439 |
Sumario: | Wild and domesticated bee species are exposed to a variety of pesticides which may drive pollinator decline. Due to wild bee sensitivity data shortage, it is unclear if the honey bee Apis mellifera is a suitable surrogate species in the current EU risk assessment scheme. Furthermore, the underlying causes for sensitivity differences in bees are not established. We assessed the acute toxicity (median lethal dose, LD50) of dimethoate towards multiple bee species, generated a species sensitivity distribution and derived a hazardous dose (HD5). Furthermore, we performed a regression analysis with body weight and dimethoate toxicity. HD5 lower 95% confidence limit was equal to honey bee mean LD50 when applying a safety factor of 10. Body weight proved to be a predictor of interspecific bee sensitivity but did not explain the pattern completely. Using acute toxicity values from honey bees and a safety factor of 10 seems to cover the interspecific sensitivity range of bees in the case of dimethoate. Acute endpoints of proposed additional test species, the buff-tailed bumblebee Bombus terrestris and the red mason bee Osmia bicornis, do not improve the risk assessment for the entire group. However, this might not apply to other insecticides such as neonicotinoids. |
---|