Cargando…
Designing sensory-substitution devices: Principles, pitfalls and potential(1)
An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and auditi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5044782/ https://www.ncbi.nlm.nih.gov/pubmed/27567755 http://dx.doi.org/10.3233/RNN-160647 |
_version_ | 1782457005354516480 |
---|---|
author | Kristjánsson, Árni Moldoveanu, Alin Jóhannesson, Ómar I. Balan, Oana Spagnol, Simone Valgeirsdóttir, Vigdís Vala Unnthorsson, Rúnar |
author_facet | Kristjánsson, Árni Moldoveanu, Alin Jóhannesson, Ómar I. Balan, Oana Spagnol, Simone Valgeirsdóttir, Vigdís Vala Unnthorsson, Rúnar |
author_sort | Kristjánsson, Árni |
collection | PubMed |
description | An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object. |
format | Online Article Text |
id | pubmed-5044782 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-50447822016-10-04 Designing sensory-substitution devices: Principles, pitfalls and potential(1) Kristjánsson, Árni Moldoveanu, Alin Jóhannesson, Ómar I. Balan, Oana Spagnol, Simone Valgeirsdóttir, Vigdís Vala Unnthorsson, Rúnar Restor Neurol Neurosci Research Article An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object. IOS Press 2016-09-21 /pmc/articles/PMC5044782/ /pubmed/27567755 http://dx.doi.org/10.3233/RNN-160647 Text en IOS Press and the authors. All rights reserved https://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kristjánsson, Árni Moldoveanu, Alin Jóhannesson, Ómar I. Balan, Oana Spagnol, Simone Valgeirsdóttir, Vigdís Vala Unnthorsson, Rúnar Designing sensory-substitution devices: Principles, pitfalls and potential(1) |
title | Designing sensory-substitution devices: Principles, pitfalls and potential(1) |
title_full | Designing sensory-substitution devices: Principles, pitfalls and potential(1) |
title_fullStr | Designing sensory-substitution devices: Principles, pitfalls and potential(1) |
title_full_unstemmed | Designing sensory-substitution devices: Principles, pitfalls and potential(1) |
title_short | Designing sensory-substitution devices: Principles, pitfalls and potential(1) |
title_sort | designing sensory-substitution devices: principles, pitfalls and potential(1) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5044782/ https://www.ncbi.nlm.nih.gov/pubmed/27567755 http://dx.doi.org/10.3233/RNN-160647 |
work_keys_str_mv | AT kristjanssonarni designingsensorysubstitutiondevicesprinciplespitfallsandpotential1 AT moldoveanualin designingsensorysubstitutiondevicesprinciplespitfallsandpotential1 AT johannessonomari designingsensorysubstitutiondevicesprinciplespitfallsandpotential1 AT balanoana designingsensorysubstitutiondevicesprinciplespitfallsandpotential1 AT spagnolsimone designingsensorysubstitutiondevicesprinciplespitfallsandpotential1 AT valgeirsdottirvigdisvala designingsensorysubstitutiondevicesprinciplespitfallsandpotential1 AT unnthorssonrunar designingsensorysubstitutiondevicesprinciplespitfallsandpotential1 |