Cargando…
Causal diagrams, information bias, and thought bias
Information bias might be present in any study, including randomized trials, because the values of variables of interest are unknown, and researchers have to rely on substitute variables, the values of which provide information on the unknown true values. We used causal directed acyclic graphs to ex...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045000/ https://www.ncbi.nlm.nih.gov/pubmed/27774007 http://dx.doi.org/10.2147/POR.S13335 |
_version_ | 1782457036280168448 |
---|---|
author | Shahar, Eyal Shahar, Doron J |
author_facet | Shahar, Eyal Shahar, Doron J |
author_sort | Shahar, Eyal |
collection | PubMed |
description | Information bias might be present in any study, including randomized trials, because the values of variables of interest are unknown, and researchers have to rely on substitute variables, the values of which provide information on the unknown true values. We used causal directed acyclic graphs to extend previous work on information bias. First, we show that measurement is a complex causal process that has two components, ie, imprinting and synthesizing. Second, we explain how the unknown values of a variable may be imputed from other variables, and present examples of valid and invalid substitutions for a variable of interest. Finally, and most importantly, we describe a previously unrecognized bias, which may be viewed as antithetical to information bias. This bias arises whenever a variable does not exist in the physical world, yet researchers obtain “information” on its nonexistent values and estimate nonexistent causal parameters. According to our thesis, the scientific literature contains many articles that are affected by such bias. |
format | Online Article Text |
id | pubmed-5045000 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-50450002016-10-21 Causal diagrams, information bias, and thought bias Shahar, Eyal Shahar, Doron J Pragmat Obs Res Methodology Information bias might be present in any study, including randomized trials, because the values of variables of interest are unknown, and researchers have to rely on substitute variables, the values of which provide information on the unknown true values. We used causal directed acyclic graphs to extend previous work on information bias. First, we show that measurement is a complex causal process that has two components, ie, imprinting and synthesizing. Second, we explain how the unknown values of a variable may be imputed from other variables, and present examples of valid and invalid substitutions for a variable of interest. Finally, and most importantly, we describe a previously unrecognized bias, which may be viewed as antithetical to information bias. This bias arises whenever a variable does not exist in the physical world, yet researchers obtain “information” on its nonexistent values and estimate nonexistent causal parameters. According to our thesis, the scientific literature contains many articles that are affected by such bias. Dove Medical Press 2010-12-10 /pmc/articles/PMC5045000/ /pubmed/27774007 http://dx.doi.org/10.2147/POR.S13335 Text en © 2010 Shahar and Shahar, publisher and licensee Dove Medical Press Ltd This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Methodology Shahar, Eyal Shahar, Doron J Causal diagrams, information bias, and thought bias |
title | Causal diagrams, information bias, and thought bias |
title_full | Causal diagrams, information bias, and thought bias |
title_fullStr | Causal diagrams, information bias, and thought bias |
title_full_unstemmed | Causal diagrams, information bias, and thought bias |
title_short | Causal diagrams, information bias, and thought bias |
title_sort | causal diagrams, information bias, and thought bias |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045000/ https://www.ncbi.nlm.nih.gov/pubmed/27774007 http://dx.doi.org/10.2147/POR.S13335 |
work_keys_str_mv | AT shahareyal causaldiagramsinformationbiasandthoughtbias AT shahardoronj causaldiagramsinformationbiasandthoughtbias |