Cargando…
Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death
Human monocyte-derived dendritic cells (mdDCs) are versatile cells that are used widely for research and experimental therapies. Although different culture conditions can affect their characteristics, there are no known subpopulations. Since monocytes differentiate into dendritic cells (DCs) in a va...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045195/ https://www.ncbi.nlm.nih.gov/pubmed/27690130 http://dx.doi.org/10.1371/journal.pone.0162984 |
_version_ | 1782457075389956096 |
---|---|
author | Trahtemberg, Uriel Grau, Amir Tabib, Adi Atallah, Mizhir Krispin, Alon Mevorach, Dror |
author_facet | Trahtemberg, Uriel Grau, Amir Tabib, Adi Atallah, Mizhir Krispin, Alon Mevorach, Dror |
author_sort | Trahtemberg, Uriel |
collection | PubMed |
description | Human monocyte-derived dendritic cells (mdDCs) are versatile cells that are used widely for research and experimental therapies. Although different culture conditions can affect their characteristics, there are no known subpopulations. Since monocytes differentiate into dendritic cells (DCs) in a variety of tissues and contexts, we asked whether they can give rise to different subpopulations. In this work we set out to characterize two human mdDC subpopulations that we identified and termed small (DC-S) and large (DC-L). Morphologically, DC-L are larger, more granular and have a more complex cell membrane. Phenotypically, DC-L show higher expression of a wide panel of surface molecules and stronger responses to maturation stimuli. Transcriptomic analysis confirmed their separate identities and findings were consistent with the phenotypes observed. Although they show similar apoptotic cell uptake, DC-L have different capabilities for phagocytosis, demonstrate better antigen processing, and have significantly better necrotic cell uptake. These subpopulations also have different patterns of cell death, with DC-L presenting an inflammatory, “dangerous” phenotype while DC-S mostly downregulate their surface markers upon cell death. Apoptotic cells induce an immune-suppressed phenotype, which becomes more pronounced among DC-L, especially after the addition of lipopolysaccharide. We propose that these two subpopulations correspond to inflammatory (DC-L) and steady-state (DC-S) DC classes that have been previously described in mice and humans. |
format | Online Article Text |
id | pubmed-5045195 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50451952016-10-27 Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death Trahtemberg, Uriel Grau, Amir Tabib, Adi Atallah, Mizhir Krispin, Alon Mevorach, Dror PLoS One Research Article Human monocyte-derived dendritic cells (mdDCs) are versatile cells that are used widely for research and experimental therapies. Although different culture conditions can affect their characteristics, there are no known subpopulations. Since monocytes differentiate into dendritic cells (DCs) in a variety of tissues and contexts, we asked whether they can give rise to different subpopulations. In this work we set out to characterize two human mdDC subpopulations that we identified and termed small (DC-S) and large (DC-L). Morphologically, DC-L are larger, more granular and have a more complex cell membrane. Phenotypically, DC-L show higher expression of a wide panel of surface molecules and stronger responses to maturation stimuli. Transcriptomic analysis confirmed their separate identities and findings were consistent with the phenotypes observed. Although they show similar apoptotic cell uptake, DC-L have different capabilities for phagocytosis, demonstrate better antigen processing, and have significantly better necrotic cell uptake. These subpopulations also have different patterns of cell death, with DC-L presenting an inflammatory, “dangerous” phenotype while DC-S mostly downregulate their surface markers upon cell death. Apoptotic cells induce an immune-suppressed phenotype, which becomes more pronounced among DC-L, especially after the addition of lipopolysaccharide. We propose that these two subpopulations correspond to inflammatory (DC-L) and steady-state (DC-S) DC classes that have been previously described in mice and humans. Public Library of Science 2016-09-30 /pmc/articles/PMC5045195/ /pubmed/27690130 http://dx.doi.org/10.1371/journal.pone.0162984 Text en © 2016 Trahtemberg et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Trahtemberg, Uriel Grau, Amir Tabib, Adi Atallah, Mizhir Krispin, Alon Mevorach, Dror Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death |
title | Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death |
title_full | Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death |
title_fullStr | Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death |
title_full_unstemmed | Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death |
title_short | Identification and Characterization of Two Human Monocyte-Derived Dendritic Cell Subpopulations with Different Functions in Dying Cell Clearance and Different Patterns of Cell Death |
title_sort | identification and characterization of two human monocyte-derived dendritic cell subpopulations with different functions in dying cell clearance and different patterns of cell death |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045195/ https://www.ncbi.nlm.nih.gov/pubmed/27690130 http://dx.doi.org/10.1371/journal.pone.0162984 |
work_keys_str_mv | AT trahtemberguriel identificationandcharacterizationoftwohumanmonocytederiveddendriticcellsubpopulationswithdifferentfunctionsindyingcellclearanceanddifferentpatternsofcelldeath AT grauamir identificationandcharacterizationoftwohumanmonocytederiveddendriticcellsubpopulationswithdifferentfunctionsindyingcellclearanceanddifferentpatternsofcelldeath AT tabibadi identificationandcharacterizationoftwohumanmonocytederiveddendriticcellsubpopulationswithdifferentfunctionsindyingcellclearanceanddifferentpatternsofcelldeath AT atallahmizhir identificationandcharacterizationoftwohumanmonocytederiveddendriticcellsubpopulationswithdifferentfunctionsindyingcellclearanceanddifferentpatternsofcelldeath AT krispinalon identificationandcharacterizationoftwohumanmonocytederiveddendriticcellsubpopulationswithdifferentfunctionsindyingcellclearanceanddifferentpatternsofcelldeath AT mevorachdror identificationandcharacterizationoftwohumanmonocytederiveddendriticcellsubpopulationswithdifferentfunctionsindyingcellclearanceanddifferentpatternsofcelldeath |