Cargando…
Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy
Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045268/ https://www.ncbi.nlm.nih.gov/pubmed/27704049 http://dx.doi.org/10.1126/sciadv.1601162 |
_version_ | 1782457089136787456 |
---|---|
author | Cao, Yue Chen, Shiyou Li, Yadong Gao, Yi Yang, Deheng Shen, Yuen Ron Liu, Wei-Tao |
author_facet | Cao, Yue Chen, Shiyou Li, Yadong Gao, Yi Yang, Deheng Shen, Yuen Ron Liu, Wei-Tao |
author_sort | Cao, Yue |
collection | PubMed |
description | Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO(2)) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. |
format | Online Article Text |
id | pubmed-5045268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-50452682016-10-04 Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy Cao, Yue Chen, Shiyou Li, Yadong Gao, Yi Yang, Deheng Shen, Yuen Ron Liu, Wei-Tao Sci Adv Research Articles Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO(2)) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides. American Association for the Advancement of Science 2016-09-30 /pmc/articles/PMC5045268/ /pubmed/27704049 http://dx.doi.org/10.1126/sciadv.1601162 Text en Copyright © 2016, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Cao, Yue Chen, Shiyou Li, Yadong Gao, Yi Yang, Deheng Shen, Yuen Ron Liu, Wei-Tao Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy |
title | Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy |
title_full | Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy |
title_fullStr | Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy |
title_full_unstemmed | Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy |
title_short | Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy |
title_sort | evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045268/ https://www.ncbi.nlm.nih.gov/pubmed/27704049 http://dx.doi.org/10.1126/sciadv.1601162 |
work_keys_str_mv | AT caoyue evolutionofanatasesurfaceactivesitesprobedbyinsitusumfrequencyphononspectroscopy AT chenshiyou evolutionofanatasesurfaceactivesitesprobedbyinsitusumfrequencyphononspectroscopy AT liyadong evolutionofanatasesurfaceactivesitesprobedbyinsitusumfrequencyphononspectroscopy AT gaoyi evolutionofanatasesurfaceactivesitesprobedbyinsitusumfrequencyphononspectroscopy AT yangdeheng evolutionofanatasesurfaceactivesitesprobedbyinsitusumfrequencyphononspectroscopy AT shenyuenron evolutionofanatasesurfaceactivesitesprobedbyinsitusumfrequencyphononspectroscopy AT liuweitao evolutionofanatasesurfaceactivesitesprobedbyinsitusumfrequencyphononspectroscopy |