Cargando…

Stimulus frequency-dependent inhibition of micturition contractions of the urinary bladder by electrical stimulation of afferent Aβ, Aδ, and C fibers in cutaneous branches of the pudendal nerve

We aimed to examine the afferent mechanisms for the reflex inhibition of the rhythmic micturition contractions (RMCs) of the urinary bladder induced by stimulation of the perineal skin afferents in urethane-anesthetized rats. Electrical stimulation (pulse duration: 0.5 ms) was applied to the cutaneo...

Descripción completa

Detalles Bibliográficos
Autores principales: Onda, Akiko, Uchida, Sae, Suzuki, Harue, Hotta, Harumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Japan 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045840/
https://www.ncbi.nlm.nih.gov/pubmed/27384685
http://dx.doi.org/10.1007/s12576-016-0468-x
Descripción
Sumario:We aimed to examine the afferent mechanisms for the reflex inhibition of the rhythmic micturition contractions (RMCs) of the urinary bladder induced by stimulation of the perineal skin afferents in urethane-anesthetized rats. Electrical stimulation (pulse duration: 0.5 ms) was applied to the cutaneous branches of the pudendal nerve (CBPN) at frequencies of 0.1, 1, and 10 Hz for 1 min. Nerve fiber groups were defined by recording compound action potentials from CBPN. Activation of only Aβ fibers (0.2 V) produced an inhibition of RMCs at 7–11 min after the onset of stimulation (late inhibition), at any tested frequency. Additional activation of Aδ fibers (1 V) produced additional early inhibition (immediately after stimulation) at 1 and 10 Hz. Furthermore, additional activation of C fibers (10 V) at 10 Hz completely stopped RMCs for >10 min. This strong inhibition persisted after local application of capsaicin to the stimulating CBPN. We conclude that activities of Aβ, Aδ, and C afferent fibers, without capsaicin-sensitive channels, can contribute to the inhibition of bladder contractions.