Cargando…
ASAP: a machine learning framework for local protein properties
Determining residue-level protein properties, such as sites of post-translational modifications (PTMs), is vital to understanding protein function. Experimental methods are costly and time-consuming, while traditional rule-based computational methods fail to annotate sites lacking substantial simila...
Autores principales: | Brandes, Nadav, Ofer, Dan, Linial, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045867/ https://www.ncbi.nlm.nih.gov/pubmed/27694209 http://dx.doi.org/10.1093/database/baw133 |
Ejemplares similares
-
The language of proteins: NLP, machine learning & protein sequences
por: Ofer, Dan, et al.
Publicado: (2021) -
ProteinBERT: a universal deep-learning model of protein sequence and function
por: Brandes, Nadav, et al.
Publicado: (2022) -
Revisiting the Risk Factors for Endometriosis: A Machine Learning Approach
por: Blass, Ido, et al.
Publicado: (2022) -
Genetic association studies of alterations in protein function expose recessive effects on cancer predisposition
por: Brandes, Nadav, et al.
Publicado: (2021) -
Quantifying gene selection in cancer through protein functional alteration bias
por: Brandes, Nadav, et al.
Publicado: (2019)