Cargando…
An Adaptive Fisher’s Combination Method for Joint Analysis of Multiple Phenotypes in Association Studies
Currently, the analyses of most genome-wide association studies (GWAS) have been performed on a single phenotype. There is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases. Therefore, using only one single phenotype may lose statistical power to identify the...
Autores principales: | Liang, Xiaoyu, Wang, Zhenchuan, Sha, Qiuying, Zhang, Shuanglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046106/ https://www.ncbi.nlm.nih.gov/pubmed/27694844 http://dx.doi.org/10.1038/srep34323 |
Ejemplares similares
-
Joint Analysis of Multiple Traits Using "Optimal" Maximum Heritability Test
por: Wang, Zhenchuan, et al.
Publicado: (2016) -
Joint Analysis of Multiple Phenotypes in Association Studies based on Cross-Validation Prediction Error
por: Yang, Xinlan, et al.
Publicado: (2019) -
A computationally efficient clustering linear combination approach to jointly analyze multiple phenotypes for GWAS
por: Wang, Meida, et al.
Publicado: (2022) -
Testing an optimally weighted combination of common and/or rare variants with multiple traits
por: Wang, Zhenchuan, et al.
Publicado: (2018) -
A clustering linear combination method for multiple phenotype association studies based on GWAS summary statistics
por: Wang, Meida, et al.
Publicado: (2023)