Cargando…
A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds
Materials scientists increasingly employ machine or statistical learning (SL) techniques to accelerate materials discovery and design. Such pursuits benefit from pooling training data across, and thus being able to generalize predictions over, k-nary compounds of diverse chemistries and structures....
Autores principales: | de Jong, Maarten, Chen, Wei, Notestine, Randy, Persson, Kristin, Ceder, Gerbrand, Jain, Anubhav, Asta, Mark, Gamst, Anthony |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046120/ https://www.ncbi.nlm.nih.gov/pubmed/27694824 http://dx.doi.org/10.1038/srep34256 |
Ejemplares similares
-
Charting the complete elastic properties of inorganic crystalline compounds
por: de Jong, Maarten, et al.
Publicado: (2015) -
Elastic moduli of polycrystalline diamond
por: Borchi, E, et al.
Publicado: (1994) -
The thermodynamic scale of inorganic crystalline metastability
por: Sun, Wenhao, et al.
Publicado: (2016) -
Elastic Moduli of Avian Eggshell
por: Chiang, Pei-Lin, et al.
Publicado: (2021) -
Atresia of the Right Posterior Naris in a Mare
por: Williams, W. L.
Publicado: (1897)