Cargando…
Multi-Pass Adaptive Voting for Nuclei Detection in Histopathological Images
Nuclei detection is often a critical initial step in the development of computer aided diagnosis and prognosis schemes in the context of digital pathology images. While over the last few years, a number of nuclei detection methods have been proposed, most of these approaches make idealistic assumpti...
Autores principales: | Lu, Cheng, Xu, Hongming, Xu, Jun, Gilmore, Hannah, Mandal, Mrinal, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046183/ https://www.ncbi.nlm.nih.gov/pubmed/27694950 http://dx.doi.org/10.1038/srep33985 |
Ejemplares similares
-
Efficient FPGA Implementation of Automatic Nuclei Detection in Histopathology Images
por: Zhou, Haonan, et al.
Publicado: (2019) -
High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
por: Cruz-Roa, Angel, et al.
Publicado: (2018) -
Automated Tubule Nuclei Quantification and Correlation with Oncotype DX risk categories in ER+ Breast Cancer Whole Slide Images
por: Romo-Bucheli, David, et al.
Publicado: (2016) -
Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images
por: Sparks, Rachel, et al.
Publicado: (2016) -
Content-based image retrieval of digitized histopathology in boosted spectrally embedded spaces
por: Sridhar, Akshay, et al.
Publicado: (2015)