Cargando…
Correcting the impact of docking pose generation error on binding affinity prediction
BACKGROUND: Pose generation error is usually quantified as the difference between the geometry of the pose generated by the docking software and that of the same molecule co-crystallised with the considered protein. Surprisingly, the impact of this error on binding affinity prediction is yet to be s...
Autores principales: | Li, Hongjian, Leung, Kwong-Sak, Wong, Man-Hon, Ballester, Pedro J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5046193/ https://www.ncbi.nlm.nih.gov/pubmed/28185549 http://dx.doi.org/10.1186/s12859-016-1169-4 |
Ejemplares similares
-
Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest
por: Li, Hongjian, et al.
Publicado: (2015) -
Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
por: Li, Hongjian, et al.
Publicado: (2014) -
The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction
por: Li, Hongjian, et al.
Publicado: (2018) -
istar: A Web Platform for Large-Scale Protein-Ligand Docking
por: Li, Hongjian, et al.
Publicado: (2014) -
iview: an interactive WebGL visualizer for protein-ligand complex
por: Li, Hongjian, et al.
Publicado: (2014)