Cargando…
Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography
The osteocyte network, through the numerous dendritic processes of osteocytes, is responsible for sensing mechanical loading and orchestrates adaptive bone remodelling by communicating with both the osteoclasts and the osteoblasts. The osteocyte network in the vicinity of implant surfaces provides i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047930/ https://www.ncbi.nlm.nih.gov/pubmed/27699573 http://dx.doi.org/10.1007/s10856-016-5779-1 |
_version_ | 1782457500132442112 |
---|---|
author | Shah, Furqan A. Stenlund, Patrik Martinelli, Anna Thomsen, Peter Palmquist, Anders |
author_facet | Shah, Furqan A. Stenlund, Patrik Martinelli, Anna Thomsen, Peter Palmquist, Anders |
author_sort | Shah, Furqan A. |
collection | PubMed |
description | The osteocyte network, through the numerous dendritic processes of osteocytes, is responsible for sensing mechanical loading and orchestrates adaptive bone remodelling by communicating with both the osteoclasts and the osteoblasts. The osteocyte network in the vicinity of implant surfaces provides insight into the bone healing process around metallic implants. Here, we investigate whether osteocytes are able to make an intimate contact with topologically modified, but micrometre smooth (S (a) < 0.5 µm) implant surfaces, and if sub-micron topography alters the composition of the interfacial tissue. Screw shaped, commercially pure (cp-Ti) titanium implants with (i) machined (S (a) = ~0.2 µm), and (ii) two-step acid-etched (HF/HNO(3) and H(2)SO(4)/HCl; S (a) = ~0.5 µm) surfaces were inserted in Sprague Dawley rat tibia and followed for 28 days. Both surfaces showed similar bone area, while the bone-implant contact was 73 % higher for the acid-etched surface. By resin cast etching, osteocytes were observed to maintain a direct intimate contact with the acid-etched surface. Although well mineralised, the interfacial tissue showed lower Ca/P and apatite-to-collagen ratios at the acid-etched surface, while mineral crystallinity and the carbonate-to-phosphate ratios were comparable for both implant surfaces. The interfacial tissue composition may therefore vary with changes in implant surface topography, independently of the amount of bone formed. Implant surfaces that influence bone to have higher amounts of organic matrix without affecting the crystallinity or the carbonate content of the mineral phase presumably result in a more resilient interfacial tissue, better able to resist crack development during functional loading than densely mineralised bone. |
format | Online Article Text |
id | pubmed-5047930 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-50479302016-10-18 Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography Shah, Furqan A. Stenlund, Patrik Martinelli, Anna Thomsen, Peter Palmquist, Anders J Mater Sci Mater Med Engineering and Nano-engineering Approaches for Medical Devices The osteocyte network, through the numerous dendritic processes of osteocytes, is responsible for sensing mechanical loading and orchestrates adaptive bone remodelling by communicating with both the osteoclasts and the osteoblasts. The osteocyte network in the vicinity of implant surfaces provides insight into the bone healing process around metallic implants. Here, we investigate whether osteocytes are able to make an intimate contact with topologically modified, but micrometre smooth (S (a) < 0.5 µm) implant surfaces, and if sub-micron topography alters the composition of the interfacial tissue. Screw shaped, commercially pure (cp-Ti) titanium implants with (i) machined (S (a) = ~0.2 µm), and (ii) two-step acid-etched (HF/HNO(3) and H(2)SO(4)/HCl; S (a) = ~0.5 µm) surfaces were inserted in Sprague Dawley rat tibia and followed for 28 days. Both surfaces showed similar bone area, while the bone-implant contact was 73 % higher for the acid-etched surface. By resin cast etching, osteocytes were observed to maintain a direct intimate contact with the acid-etched surface. Although well mineralised, the interfacial tissue showed lower Ca/P and apatite-to-collagen ratios at the acid-etched surface, while mineral crystallinity and the carbonate-to-phosphate ratios were comparable for both implant surfaces. The interfacial tissue composition may therefore vary with changes in implant surface topography, independently of the amount of bone formed. Implant surfaces that influence bone to have higher amounts of organic matrix without affecting the crystallinity or the carbonate content of the mineral phase presumably result in a more resilient interfacial tissue, better able to resist crack development during functional loading than densely mineralised bone. Springer US 2016-10-03 2016 /pmc/articles/PMC5047930/ /pubmed/27699573 http://dx.doi.org/10.1007/s10856-016-5779-1 Text en © The Author(s) 2016 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Engineering and Nano-engineering Approaches for Medical Devices Shah, Furqan A. Stenlund, Patrik Martinelli, Anna Thomsen, Peter Palmquist, Anders Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography |
title | Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography |
title_full | Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography |
title_fullStr | Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography |
title_full_unstemmed | Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography |
title_short | Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography |
title_sort | direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography |
topic | Engineering and Nano-engineering Approaches for Medical Devices |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047930/ https://www.ncbi.nlm.nih.gov/pubmed/27699573 http://dx.doi.org/10.1007/s10856-016-5779-1 |
work_keys_str_mv | AT shahfurqana directcommunicationbetweenosteocytesandacidetchedtitaniumimplantswithasubmicrontopography AT stenlundpatrik directcommunicationbetweenosteocytesandacidetchedtitaniumimplantswithasubmicrontopography AT martinellianna directcommunicationbetweenosteocytesandacidetchedtitaniumimplantswithasubmicrontopography AT thomsenpeter directcommunicationbetweenosteocytesandacidetchedtitaniumimplantswithasubmicrontopography AT palmquistanders directcommunicationbetweenosteocytesandacidetchedtitaniumimplantswithasubmicrontopography |