Cargando…
Modeling the costs and long-term health benefits of screening the general population for risks of cardiovascular disease: a review of methods used in the literature
BACKGROUND: Strategies for screening and intervening to reduce the risk of cardiovascular disease (CVD) in primary care settings need to be assessed in terms of both their costs and long-term health effects. We undertook a literature review to investigate the methodologies used. METHODS: In a framew...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5047941/ https://www.ncbi.nlm.nih.gov/pubmed/26682549 http://dx.doi.org/10.1007/s10198-015-0753-2 |
Sumario: | BACKGROUND: Strategies for screening and intervening to reduce the risk of cardiovascular disease (CVD) in primary care settings need to be assessed in terms of both their costs and long-term health effects. We undertook a literature review to investigate the methodologies used. METHODS: In a framework of developing a new health-economic model for evaluating different screening strategies for primary prevention of CVD in Europe (EPIC-CVD project), we identified seven key modeling issues and reviewed papers published between 2000 and 2013 to assess how they were addressed. RESULTS: We found 13 relevant health-economic modeling studies of screening to prevent CVD in primary care. The models varied in their degree of complexity, with between two and 33 health states. Programmes that screen the whole population by a fixed cut-off (e.g., predicted 10-year CVD risk >20 %) identify predominantly elderly people, who may not be those most likely to benefit from long-term treatment. Uncertainty and model validation were generally poorly addressed. Few studies considered the disutility of taking drugs in otherwise healthy individuals or the budget impact of the programme. CONCLUSIONS: Model validation, incorporation of parameter uncertainty, and sensitivity analyses for assumptions made are all important components of model building and reporting, and deserve more attention. Complex models may not necessarily give more accurate predictions. Availability of a large enough source dataset to reliably estimate all relevant input parameters is crucial for achieving credible results. Decision criteria should consider budget impact and the medicalization of the population as well as cost-effectiveness thresholds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10198-015-0753-2) contains supplementary material, which is available to authorized users. |
---|