Cargando…
Local versus global biological network alignment
Motivation: Network alignment (NA) aims to find regions of similarities between species’ molecular networks. There exist two NA categories: local (LNA) and global (GNA). LNA finds small highly conserved network regions and produces a many-to-many node mapping. GNA finds large conserved regions and p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048063/ https://www.ncbi.nlm.nih.gov/pubmed/27357169 http://dx.doi.org/10.1093/bioinformatics/btw348 |
_version_ | 1782457530256982016 |
---|---|
author | Meng, Lei Striegel, Aaron Milenković, Tijana |
author_facet | Meng, Lei Striegel, Aaron Milenković, Tijana |
author_sort | Meng, Lei |
collection | PubMed |
description | Motivation: Network alignment (NA) aims to find regions of similarities between species’ molecular networks. There exist two NA categories: local (LNA) and global (GNA). LNA finds small highly conserved network regions and produces a many-to-many node mapping. GNA finds large conserved regions and produces a one-to-one node mapping. Given the different outputs of LNA and GNA, when a new NA method is proposed, it is compared against existing methods from the same category. However, both NA categories have the same goal: to allow for transferring functional knowledge from well- to poorly-studied species between conserved network regions. So, which one to choose, LNA or GNA? To answer this, we introduce the first systematic evaluation of the two NA categories. Results: We introduce new measures of alignment quality that allow for fair comparison of the different LNA and GNA outputs, as such measures do not exist. We provide user-friendly software for efficient alignment evaluation that implements the new and existing measures. We evaluate prominent LNA and GNA methods on synthetic and real-world biological networks. We study the effect on alignment quality of using different interaction types and confidence levels. We find that the superiority of one NA category over the other is context-dependent. Further, when we contrast LNA and GNA in the application of learning novel protein functional knowledge, the two produce very different predictions, indicating their complementarity. Our results and software provide guidelines for future NA method development and evaluation. Availability and implementation: Software: http://www.nd.edu/~cone/LNA_GNA Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-5048063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-50480632016-10-05 Local versus global biological network alignment Meng, Lei Striegel, Aaron Milenković, Tijana Bioinformatics Original Paper Motivation: Network alignment (NA) aims to find regions of similarities between species’ molecular networks. There exist two NA categories: local (LNA) and global (GNA). LNA finds small highly conserved network regions and produces a many-to-many node mapping. GNA finds large conserved regions and produces a one-to-one node mapping. Given the different outputs of LNA and GNA, when a new NA method is proposed, it is compared against existing methods from the same category. However, both NA categories have the same goal: to allow for transferring functional knowledge from well- to poorly-studied species between conserved network regions. So, which one to choose, LNA or GNA? To answer this, we introduce the first systematic evaluation of the two NA categories. Results: We introduce new measures of alignment quality that allow for fair comparison of the different LNA and GNA outputs, as such measures do not exist. We provide user-friendly software for efficient alignment evaluation that implements the new and existing measures. We evaluate prominent LNA and GNA methods on synthetic and real-world biological networks. We study the effect on alignment quality of using different interaction types and confidence levels. We find that the superiority of one NA category over the other is context-dependent. Further, when we contrast LNA and GNA in the application of learning novel protein functional knowledge, the two produce very different predictions, indicating their complementarity. Our results and software provide guidelines for future NA method development and evaluation. Availability and implementation: Software: http://www.nd.edu/~cone/LNA_GNA Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2016-10-15 2016-06-29 /pmc/articles/PMC5048063/ /pubmed/27357169 http://dx.doi.org/10.1093/bioinformatics/btw348 Text en © The Author 2016. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Paper Meng, Lei Striegel, Aaron Milenković, Tijana Local versus global biological network alignment |
title | Local versus global biological network alignment |
title_full | Local versus global biological network alignment |
title_fullStr | Local versus global biological network alignment |
title_full_unstemmed | Local versus global biological network alignment |
title_short | Local versus global biological network alignment |
title_sort | local versus global biological network alignment |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048063/ https://www.ncbi.nlm.nih.gov/pubmed/27357169 http://dx.doi.org/10.1093/bioinformatics/btw348 |
work_keys_str_mv | AT menglei localversusglobalbiologicalnetworkalignment AT striegelaaron localversusglobalbiologicalnetworkalignment AT milenkovictijana localversusglobalbiologicalnetworkalignment |