Cargando…

Blood pulsation measurement using cameras operating in visible light: limitations

BACKGROUND: The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of thi...

Descripción completa

Detalles Bibliográficos
Autor principal: Koprowski, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048457/
https://www.ncbi.nlm.nih.gov/pubmed/27716321
http://dx.doi.org/10.1186/s12938-016-0232-8
Descripción
Sumario:BACKGROUND: The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). METHODS: The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing—allowing for the image filtration and stabilization (object location tracking); (2) main image processing—allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis—filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. RESULTS AND CONCLUSIONS: The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p < 0.01 and sunlight, or a slightly larger error (±3 beats per minute) for artificial lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b).