Cargando…
Handling missing rows in multi-omics data integration: multiple imputation in multiple factor analysis framework
BACKGROUND: In omics data integration studies, it is common, for a variety of reasons, for some individuals to not be present in all data tables. Missing row values are challenging to deal with because most statistical methods cannot be directly applied to incomplete datasets. To overcome this issue...
Autores principales: | Voillet, Valentin, Besse, Philippe, Liaubet, Laurence, San Cristobal, Magali, González, Ignacio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048483/ https://www.ncbi.nlm.nih.gov/pubmed/27716030 http://dx.doi.org/10.1186/s12859-016-1273-5 |
Ejemplares similares
-
Missing data and multiple imputation in clinical epidemiological research
por: Pedersen, Alma B, et al.
Publicado: (2017) -
A framework for handling missing accelerometer outcome data in trials
por: Tackney, Mia S., et al.
Publicado: (2021) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Should multiple imputation be the method of choice for handling missing data in randomized trials?
por: Sullivan, Thomas R, et al.
Publicado: (2016) -
Multiple imputation for handling missing outcome data when estimating the relative risk
por: Sullivan, Thomas R., et al.
Publicado: (2017)