Cargando…

The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance

More than 12 % of women will be diagnosed with breast cancer in their lifetime. Although there have been tremendous advances in elucidating genetic risk factors underlying both familial and sporadic breast cancer, much of the genetic contribution to breast cancer etiology remains unknown. The discov...

Descripción completa

Detalles Bibliográficos
Autores principales: Skol, Andrew D., Sasaki, Mark M., Onel, Kenan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048663/
https://www.ncbi.nlm.nih.gov/pubmed/27716388
http://dx.doi.org/10.1186/s13058-016-0759-4
Descripción
Sumario:More than 12 % of women will be diagnosed with breast cancer in their lifetime. Although there have been tremendous advances in elucidating genetic risk factors underlying both familial and sporadic breast cancer, much of the genetic contribution to breast cancer etiology remains unknown. The discovery of BRCA1 and BRCA2 over 20 years ago remains the seminal event in the field and has paved the way for the discovery of other high-penetrance susceptibility genes by linkage analysis. The advent of genome-wide association studies made possible the next wave of discoveries, in which over 80 low-penetrance and moderate-penetrance variants were identified. Although these studies were highly successful at discovering variants associated with both familial and sporadic breast cancer, the variants identified to date explain only 50 % of the heritability of breast cancer. In this review, we look back at the investigative strategies that have led to our current understanding of breast cancer genetics, consider the challenges of performing association studies in heterogeneous complex diseases such as breast cancer, and look ahead toward the types of study designs that may lead to the identification of the genetic variation accounting for the remaining missing heritability.