Cargando…
Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces
Macromolecular oligomeric assemblies are involved in many biochemical processes of living organisms. The benefits of such assemblies in crowded cellular environments include increased reaction rates, efficient feedback regulation, cooperativity and protective functions. However, an atom‐level struct...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049452/ https://www.ncbi.nlm.nih.gov/pubmed/26248608 http://dx.doi.org/10.1002/prot.24873 |
_version_ | 1782457732859691008 |
---|---|
author | Dietzen, Matthias Kalinina, Olga V. Taškova, Katerina Kneissl, Benny Hildebrandt, Anna‐Katharina Jaenicke, Elmar Decker, Heinz Lengauer, Thomas Hildebrandt, Andreas |
author_facet | Dietzen, Matthias Kalinina, Olga V. Taškova, Katerina Kneissl, Benny Hildebrandt, Anna‐Katharina Jaenicke, Elmar Decker, Heinz Lengauer, Thomas Hildebrandt, Andreas |
author_sort | Dietzen, Matthias |
collection | PubMed |
description | Macromolecular oligomeric assemblies are involved in many biochemical processes of living organisms. The benefits of such assemblies in crowded cellular environments include increased reaction rates, efficient feedback regulation, cooperativity and protective functions. However, an atom‐level structural determination of large assemblies is challenging due to the size of the complex and the difference in binding affinities of the involved proteins. In this study, we propose a novel combinatorial greedy algorithm for assembling large oligomeric complexes from information on the approximate position of interaction interfaces of pairs of monomers in the complex. Prior information on complex symmetry is not required but rather the symmetry is inferred during assembly. We implement an efficient geometric score, the transformation match score, that bypasses the model ranking problems of state‐of‐the‐art scoring functions by scoring the similarity between the inferred dimers of the same monomer simultaneously with different binding partners in a (sub)complex with a set of pregenerated docking poses. We compiled a diverse benchmark set of 308 homo and heteromeric complexes containing 6 to 60 monomers. To explore the applicability of the method, we considered 48 sets of parameters and selected those three sets of parameters, for which the algorithm can correctly reconstruct the maximum number, namely 252 complexes (81.8%) in, at least one of the respective three runs. The crossvalidation coverage, that is, the mean fraction of correctly reconstructed benchmark complexes during crossvalidation, was 78.1%, which demonstrates the ability of the presented method to correctly reconstruct topology of a large variety of biological complexes. Proteins 2015; 83:1887–1899. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. |
format | Online Article Text |
id | pubmed-5049452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50494522016-10-06 Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces Dietzen, Matthias Kalinina, Olga V. Taškova, Katerina Kneissl, Benny Hildebrandt, Anna‐Katharina Jaenicke, Elmar Decker, Heinz Lengauer, Thomas Hildebrandt, Andreas Proteins Articles Macromolecular oligomeric assemblies are involved in many biochemical processes of living organisms. The benefits of such assemblies in crowded cellular environments include increased reaction rates, efficient feedback regulation, cooperativity and protective functions. However, an atom‐level structural determination of large assemblies is challenging due to the size of the complex and the difference in binding affinities of the involved proteins. In this study, we propose a novel combinatorial greedy algorithm for assembling large oligomeric complexes from information on the approximate position of interaction interfaces of pairs of monomers in the complex. Prior information on complex symmetry is not required but rather the symmetry is inferred during assembly. We implement an efficient geometric score, the transformation match score, that bypasses the model ranking problems of state‐of‐the‐art scoring functions by scoring the similarity between the inferred dimers of the same monomer simultaneously with different binding partners in a (sub)complex with a set of pregenerated docking poses. We compiled a diverse benchmark set of 308 homo and heteromeric complexes containing 6 to 60 monomers. To explore the applicability of the method, we considered 48 sets of parameters and selected those three sets of parameters, for which the algorithm can correctly reconstruct the maximum number, namely 252 complexes (81.8%) in, at least one of the respective three runs. The crossvalidation coverage, that is, the mean fraction of correctly reconstructed benchmark complexes during crossvalidation, was 78.1%, which demonstrates the ability of the presented method to correctly reconstruct topology of a large variety of biological complexes. Proteins 2015; 83:1887–1899. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. John Wiley and Sons Inc. 2015-08-24 2015-10 /pmc/articles/PMC5049452/ /pubmed/26248608 http://dx.doi.org/10.1002/prot.24873 Text en © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Dietzen, Matthias Kalinina, Olga V. Taškova, Katerina Kneissl, Benny Hildebrandt, Anna‐Katharina Jaenicke, Elmar Decker, Heinz Lengauer, Thomas Hildebrandt, Andreas Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces |
title | Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces |
title_full | Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces |
title_fullStr | Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces |
title_full_unstemmed | Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces |
title_short | Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces |
title_sort | large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049452/ https://www.ncbi.nlm.nih.gov/pubmed/26248608 http://dx.doi.org/10.1002/prot.24873 |
work_keys_str_mv | AT dietzenmatthias largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces AT kalininaolgav largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces AT taskovakaterina largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces AT kneisslbenny largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces AT hildebrandtannakatharina largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces AT jaenickeelmar largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces AT deckerheinz largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces AT lengauerthomas largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces AT hildebrandtandreas largeoligomericcomplexstructurescanbecomputationallyassembledbyefficientlycombiningdockedinterfaces |