Cargando…

A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries

Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sod...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Changbao, Kopold, Peter, Li, Weihan, van Aken, Peter A., Maier, Joachim, Yu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049589/
https://www.ncbi.nlm.nih.gov/pubmed/27722078
http://dx.doi.org/10.1002/advs.201500200
_version_ 1782457745980522496
author Zhu, Changbao
Kopold, Peter
Li, Weihan
van Aken, Peter A.
Maier, Joachim
Yu, Yan
author_facet Zhu, Changbao
Kopold, Peter
Li, Weihan
van Aken, Peter A.
Maier, Joachim
Yu, Yan
author_sort Zhu, Changbao
collection PubMed
description Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sodium ion batteries. Here, taking SnS as a model material, a novel general strategy is proposed to fabricate a 3D porous interconnected metal sulfide/carbon nanocomposite by the electrostatic spray deposition technique without adding any expensive carbonaceous materials such as graphene or carbon nanotube. In this way, small nanorods of SnS are generated with sizes of ≈10–20 nm embedded in amorphous carbon and self‐assembled into a 3D porous interconnected nanocomposite. The SnS:C is directly deposited on the Ti foil as a current collector and neither conductive additives nor binder are needed for battery assembly. Such electrodes exhibit a high reversible capacity, high rate capability, and long cycling stability for both lithium and sodium storage.
format Online
Article
Text
id pubmed-5049589
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-50495892016-10-06 A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries Zhu, Changbao Kopold, Peter Li, Weihan van Aken, Peter A. Maier, Joachim Yu, Yan Adv Sci (Weinh) Full Papers Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sodium ion batteries. Here, taking SnS as a model material, a novel general strategy is proposed to fabricate a 3D porous interconnected metal sulfide/carbon nanocomposite by the electrostatic spray deposition technique without adding any expensive carbonaceous materials such as graphene or carbon nanotube. In this way, small nanorods of SnS are generated with sizes of ≈10–20 nm embedded in amorphous carbon and self‐assembled into a 3D porous interconnected nanocomposite. The SnS:C is directly deposited on the Ti foil as a current collector and neither conductive additives nor binder are needed for battery assembly. Such electrodes exhibit a high reversible capacity, high rate capability, and long cycling stability for both lithium and sodium storage. John Wiley and Sons Inc. 2015-09-02 /pmc/articles/PMC5049589/ /pubmed/27722078 http://dx.doi.org/10.1002/advs.201500200 Text en © 2015 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Zhu, Changbao
Kopold, Peter
Li, Weihan
van Aken, Peter A.
Maier, Joachim
Yu, Yan
A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries
title A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries
title_full A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries
title_fullStr A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries
title_full_unstemmed A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries
title_short A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries
title_sort general strategy to fabricate carbon‐coated 3d porous interconnected metal sulfides: case study of sns/c nanocomposite for high‐performance lithium and sodium ion batteries
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049589/
https://www.ncbi.nlm.nih.gov/pubmed/27722078
http://dx.doi.org/10.1002/advs.201500200
work_keys_str_mv AT zhuchangbao ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT kopoldpeter ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT liweihan ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT vanakenpetera ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT maierjoachim ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT yuyan ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT zhuchangbao generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT kopoldpeter generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT liweihan generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT vanakenpetera generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT maierjoachim generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries
AT yuyan generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries