Cargando…
A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries
Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sod...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049589/ https://www.ncbi.nlm.nih.gov/pubmed/27722078 http://dx.doi.org/10.1002/advs.201500200 |
_version_ | 1782457745980522496 |
---|---|
author | Zhu, Changbao Kopold, Peter Li, Weihan van Aken, Peter A. Maier, Joachim Yu, Yan |
author_facet | Zhu, Changbao Kopold, Peter Li, Weihan van Aken, Peter A. Maier, Joachim Yu, Yan |
author_sort | Zhu, Changbao |
collection | PubMed |
description | Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sodium ion batteries. Here, taking SnS as a model material, a novel general strategy is proposed to fabricate a 3D porous interconnected metal sulfide/carbon nanocomposite by the electrostatic spray deposition technique without adding any expensive carbonaceous materials such as graphene or carbon nanotube. In this way, small nanorods of SnS are generated with sizes of ≈10–20 nm embedded in amorphous carbon and self‐assembled into a 3D porous interconnected nanocomposite. The SnS:C is directly deposited on the Ti foil as a current collector and neither conductive additives nor binder are needed for battery assembly. Such electrodes exhibit a high reversible capacity, high rate capability, and long cycling stability for both lithium and sodium storage. |
format | Online Article Text |
id | pubmed-5049589 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-50495892016-10-06 A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries Zhu, Changbao Kopold, Peter Li, Weihan van Aken, Peter A. Maier, Joachim Yu, Yan Adv Sci (Weinh) Full Papers Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sodium ion batteries. Here, taking SnS as a model material, a novel general strategy is proposed to fabricate a 3D porous interconnected metal sulfide/carbon nanocomposite by the electrostatic spray deposition technique without adding any expensive carbonaceous materials such as graphene or carbon nanotube. In this way, small nanorods of SnS are generated with sizes of ≈10–20 nm embedded in amorphous carbon and self‐assembled into a 3D porous interconnected nanocomposite. The SnS:C is directly deposited on the Ti foil as a current collector and neither conductive additives nor binder are needed for battery assembly. Such electrodes exhibit a high reversible capacity, high rate capability, and long cycling stability for both lithium and sodium storage. John Wiley and Sons Inc. 2015-09-02 /pmc/articles/PMC5049589/ /pubmed/27722078 http://dx.doi.org/10.1002/advs.201500200 Text en © 2015 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Full Papers Zhu, Changbao Kopold, Peter Li, Weihan van Aken, Peter A. Maier, Joachim Yu, Yan A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries |
title | A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries |
title_full | A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries |
title_fullStr | A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries |
title_full_unstemmed | A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries |
title_short | A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries |
title_sort | general strategy to fabricate carbon‐coated 3d porous interconnected metal sulfides: case study of sns/c nanocomposite for high‐performance lithium and sodium ion batteries |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049589/ https://www.ncbi.nlm.nih.gov/pubmed/27722078 http://dx.doi.org/10.1002/advs.201500200 |
work_keys_str_mv | AT zhuchangbao ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT kopoldpeter ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT liweihan ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT vanakenpetera ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT maierjoachim ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT yuyan ageneralstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT zhuchangbao generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT kopoldpeter generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT liweihan generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT vanakenpetera generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT maierjoachim generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries AT yuyan generalstrategytofabricatecarboncoated3dporousinterconnectedmetalsulfidescasestudyofsnscnanocompositeforhighperformancelithiumandsodiumionbatteries |