Cargando…
Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic‐derived dose justification for phase 3 studies in patients with nosocomial pneumonia
Ceftolozane/tazobactam is an antipseudomonal antibacterial approved for the treatment of complicated urinary tract infections (cUTIs) and complicated intra‐abdominal infections (cIAIs) and in phase 3 clinical development for treatment of nosocomial pneumonia. A population pharmacokinetic (PK) model...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049594/ https://www.ncbi.nlm.nih.gov/pubmed/26096377 http://dx.doi.org/10.1002/jcph.566 |
Sumario: | Ceftolozane/tazobactam is an antipseudomonal antibacterial approved for the treatment of complicated urinary tract infections (cUTIs) and complicated intra‐abdominal infections (cIAIs) and in phase 3 clinical development for treatment of nosocomial pneumonia. A population pharmacokinetic (PK) model with the plasma‐to‐epithelial lining fluid (ELF) kinetics of ceftolozane/tazobactam was used to justify dosing regimens for patients with nosocomial pneumonia in phase 3 studies. Monte Carlo simulations were performed to determine ceftolozane/tazobactam dosing regimens with a >90% probability of target attainment (PTA) for a range of pharmacokinetic/pharmacodynamic targets at relevant minimum inhibitory concentrations (MICs) for key pathogens in nosocomial pneumonia. With a plasma‐to‐ELF penetration ratio of approximately 50%, as observed from an ELF PK study, a doubling of the current dose regimens for different renal functions that are approved for cUTIs and cIAIs is needed to achieve >90% PTA for nosocomial pneumonia. For example, a 3‐g dose of ceftolozane/tazobactam for nosocomial pneumonia patients with normal renal function is needed to achieve a >90% PTA (actual 98%) for the 1‐log kill target against pathogens with an MIC of ≤8 mg/L in ELF, compared with the 1.5‐g dose approved for cIAIs and cUTIs. |
---|