Cargando…
Bayesian Correlation Analysis for Sequence Count Data
Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These e...
Autores principales: | Sánchez-Taltavull, Daniel, Ramachandran, Parameswaran, Lau, Nelson, Perkins, Theodore J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049778/ https://www.ncbi.nlm.nih.gov/pubmed/27701449 http://dx.doi.org/10.1371/journal.pone.0163595 |
Ejemplares similares
-
Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks
por: Ramachandran, Parameswaran, et al.
Publicado: (2017) -
Bayesian correlation is a robust gene similarity measure for single-cell RNA-seq data
por: Sanchez-Taltavull, Daniel, et al.
Publicado: (2020) -
Adaptive bandwidth kernel density estimation for next-generation sequencing data
por: Ramachandran, Parameswaran, et al.
Publicado: (2013) -
MaSC: mappability-sensitive cross-correlation for estimating mean fragment length of single-end short-read sequencing data
por: Ramachandran, Parameswaran, et al.
Publicado: (2013) -
BIDCHIPS: bias decomposition and removal from ChIP-seq data clarifies true binding signal and its functional correlates
por: Ramachandran, Parameswaran, et al.
Publicado: (2015)