Cargando…
Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates
The inability to augment capillary blood volume (CBV) in response to insulin or glucose is thought to contribute to insulin resistance (IR) by limiting glucose uptake in key storage sites. Understanding the mechanisms that contribute to impaired CBV augmentation early in the onset of IR may lead to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050090/ https://www.ncbi.nlm.nih.gov/pubmed/27357159 http://dx.doi.org/10.1038/ijo.2016.117 |
_version_ | 1782457829136793600 |
---|---|
author | Chadderdon, Scott M. Belcik, J. Todd Bader, Lindsay Kievit, Paul Grove, Kevin L. Lindner, Jonathan R. |
author_facet | Chadderdon, Scott M. Belcik, J. Todd Bader, Lindsay Kievit, Paul Grove, Kevin L. Lindner, Jonathan R. |
author_sort | Chadderdon, Scott M. |
collection | PubMed |
description | The inability to augment capillary blood volume (CBV) in response to insulin or glucose is thought to contribute to insulin resistance (IR) by limiting glucose uptake in key storage sites. Understanding the mechanisms that contribute to impaired CBV augmentation early in the onset of IR may lead to new future therapies. We hypothesized that inactivity alters the balance of vasoactive eicosanoids and contributes to microvascular IR. In ten activity-restricted (AR) and six normal-activity (NA) adult male rhesus macaques, contrast-enhanced ultrasound of skeletal muscle blood flow and CBV was performed at baseline and during intravenous glucose tolerance test (IVGTT). Plasma was analyzed for vasoconstrictor hydroxyeicosatetraenoic acids (HETEs) and the ratio of vasodilatory epoxyeicosatrienoic acids (EETs) to their less biologically active dihydroxyeicosatrienoic acids (DHETs) as an indirect measure of soluble epoxide-hydrolase (sEH) activity. AR primates were IR during IVGTT and had a 45% lower glucose-stimulated CBV response. Vasoconstrictor 18-HETE and 19-HETE and the DHET/EET ratio were markedly elevated in the AR group and correlated inversely with the CBV response. Additionally, levels of 18-HETE and 19-HETE correlated directly with microvascular IR. We conclude that a shift towards increased eicosanoid vasoconstrictor tone correlates with abnormal skeletal muscle vascular recruitment and may contribute to IR. |
format | Online Article Text |
id | pubmed-5050090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-50500902016-12-30 Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates Chadderdon, Scott M. Belcik, J. Todd Bader, Lindsay Kievit, Paul Grove, Kevin L. Lindner, Jonathan R. Int J Obes (Lond) Article The inability to augment capillary blood volume (CBV) in response to insulin or glucose is thought to contribute to insulin resistance (IR) by limiting glucose uptake in key storage sites. Understanding the mechanisms that contribute to impaired CBV augmentation early in the onset of IR may lead to new future therapies. We hypothesized that inactivity alters the balance of vasoactive eicosanoids and contributes to microvascular IR. In ten activity-restricted (AR) and six normal-activity (NA) adult male rhesus macaques, contrast-enhanced ultrasound of skeletal muscle blood flow and CBV was performed at baseline and during intravenous glucose tolerance test (IVGTT). Plasma was analyzed for vasoconstrictor hydroxyeicosatetraenoic acids (HETEs) and the ratio of vasodilatory epoxyeicosatrienoic acids (EETs) to their less biologically active dihydroxyeicosatrienoic acids (DHETs) as an indirect measure of soluble epoxide-hydrolase (sEH) activity. AR primates were IR during IVGTT and had a 45% lower glucose-stimulated CBV response. Vasoconstrictor 18-HETE and 19-HETE and the DHET/EET ratio were markedly elevated in the AR group and correlated inversely with the CBV response. Additionally, levels of 18-HETE and 19-HETE correlated directly with microvascular IR. We conclude that a shift towards increased eicosanoid vasoconstrictor tone correlates with abnormal skeletal muscle vascular recruitment and may contribute to IR. 2016-06-30 2016-10 /pmc/articles/PMC5050090/ /pubmed/27357159 http://dx.doi.org/10.1038/ijo.2016.117 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Chadderdon, Scott M. Belcik, J. Todd Bader, Lindsay Kievit, Paul Grove, Kevin L. Lindner, Jonathan R. Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates |
title | Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates |
title_full | Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates |
title_fullStr | Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates |
title_full_unstemmed | Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates |
title_short | Vasoconstrictor Eicosanoids and Impaired Microvascular Function in Inactive and Insulin Resistant Primates |
title_sort | vasoconstrictor eicosanoids and impaired microvascular function in inactive and insulin resistant primates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050090/ https://www.ncbi.nlm.nih.gov/pubmed/27357159 http://dx.doi.org/10.1038/ijo.2016.117 |
work_keys_str_mv | AT chadderdonscottm vasoconstrictoreicosanoidsandimpairedmicrovascularfunctionininactiveandinsulinresistantprimates AT belcikjtodd vasoconstrictoreicosanoidsandimpairedmicrovascularfunctionininactiveandinsulinresistantprimates AT baderlindsay vasoconstrictoreicosanoidsandimpairedmicrovascularfunctionininactiveandinsulinresistantprimates AT kievitpaul vasoconstrictoreicosanoidsandimpairedmicrovascularfunctionininactiveandinsulinresistantprimates AT grovekevinl vasoconstrictoreicosanoidsandimpairedmicrovascularfunctionininactiveandinsulinresistantprimates AT lindnerjonathanr vasoconstrictoreicosanoidsandimpairedmicrovascularfunctionininactiveandinsulinresistantprimates |