Cargando…

Recovery of platinum(0) through the reduction of platinum ions by hydrogenase-displaying yeast

Biological technologies for recycling rare metals, which are essential for high-tech products, have attracted much attention because they could prove to be more environmentally friendly and energy-saving than other methods. We have developed biological recycling technologies by cell surface engineer...

Descripción completa

Detalles Bibliográficos
Autores principales: Ito, Rio, Kuroda, Kouichi, Hashimoto, Haruka, Ueda, Mitsuyoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5050174/
https://www.ncbi.nlm.nih.gov/pubmed/27704470
http://dx.doi.org/10.1186/s13568-016-0262-4
Descripción
Sumario:Biological technologies for recycling rare metals, which are essential for high-tech products, have attracted much attention because they could prove to be more environmentally friendly and energy-saving than other methods. We have developed biological recycling technologies by cell surface engineering for the selective recovery of toxic heavy metal ions and rare metal ions from aqueous wastes. In this study, we aimed to construct a unique biological technique to recover rare metals ‘in solid’ form by reducing rare metal ions, leading to a practical next-generation recovery system. Sulfate-reducing bacteria (SRB) can reduce Pt(II) to Pt(0), and hydrogenases of SRB contribute to the reduction. Therefore, we constructed yeasts displaying their hydrogenases on the ‘cell membrane’, and reduction experiments were performed under anaerobic conditions without any electron donors. As a result, hydrogenase-displaying yeasts produced black precipitates in PtCl(4) (2−) solution. Based on X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) observations, the constructed yeasts were found to successfully produce the precipitates of Pt(0) through the reduction of Pt(II). Interestingly, the precipitates of Pt(0) were formed as nanoparticles, suitable for industrial usage.