Cargando…
A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs
Current totally implantable wireless blood flow monitors are large and cannot operate alongside nearby monitors. To alleviate the problems with the current monitors, we developed a system to monitor blood flow wirelessly, with a simple and easily interpretable real-time output. To the best of our kn...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052026/ https://www.ncbi.nlm.nih.gov/pubmed/27730016 http://dx.doi.org/10.1109/JTEHM.2016.2588504 |
_version_ | 1782458175585255424 |
---|---|
collection | PubMed |
description | Current totally implantable wireless blood flow monitors are large and cannot operate alongside nearby monitors. To alleviate the problems with the current monitors, we developed a system to monitor blood flow wirelessly, with a simple and easily interpretable real-time output. To the best of our knowledge, the implanted electronics are the smallest in reported literature, which reduces bio-burden. Calibration was performed across realistic physiological flow ranges using a syringe pump. The device’s sensors connected directly to the bilateral femoral veins of swine. For each 1 min, blood flow was monitored, then, an occlusion was introduced, and then, the occlusion was removed to resume flow. Each vein of four pigs was monitored four times, totaling 32 data collections. The implant measured 1.70 cm(3) without battery/encapsulation. Across its calibrated range, including equipment tolerances, the relative error is less than ±5% above 8 mL/min and between −0.8% and +1.2% at its largest calibrated flow rate, which to the best of our knowledge is the lowest reported in the literature across the measured calibration range. The average standard deviation of the flow waveform amplitude was three times greater than that of no-flow. Establishing the relative amplitude for the flow and no-flow waveforms was found necessary, particularly for noise modulated Doppler signals. Its size and accuracy, compared with other microcontroller-equipped totally implantable monitors, make it a good candidate for future tether-free free flap monitoring studies. |
format | Online Article Text |
id | pubmed-5052026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | IEEE |
record_format | MEDLINE/PubMed |
spelling | pubmed-50520262016-10-11 A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs IEEE J Transl Eng Health Med Article Current totally implantable wireless blood flow monitors are large and cannot operate alongside nearby monitors. To alleviate the problems with the current monitors, we developed a system to monitor blood flow wirelessly, with a simple and easily interpretable real-time output. To the best of our knowledge, the implanted electronics are the smallest in reported literature, which reduces bio-burden. Calibration was performed across realistic physiological flow ranges using a syringe pump. The device’s sensors connected directly to the bilateral femoral veins of swine. For each 1 min, blood flow was monitored, then, an occlusion was introduced, and then, the occlusion was removed to resume flow. Each vein of four pigs was monitored four times, totaling 32 data collections. The implant measured 1.70 cm(3) without battery/encapsulation. Across its calibrated range, including equipment tolerances, the relative error is less than ±5% above 8 mL/min and between −0.8% and +1.2% at its largest calibrated flow rate, which to the best of our knowledge is the lowest reported in the literature across the measured calibration range. The average standard deviation of the flow waveform amplitude was three times greater than that of no-flow. Establishing the relative amplitude for the flow and no-flow waveforms was found necessary, particularly for noise modulated Doppler signals. Its size and accuracy, compared with other microcontroller-equipped totally implantable monitors, make it a good candidate for future tether-free free flap monitoring studies. IEEE 2016-08-25 /pmc/articles/PMC5052026/ /pubmed/27730016 http://dx.doi.org/10.1109/JTEHM.2016.2588504 Text en This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Article A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs |
title | A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs |
title_full | A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs |
title_fullStr | A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs |
title_full_unstemmed | A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs |
title_short | A System for Simple Real-Time Anastomotic Failure Detection and Wireless Blood Flow Monitoring in the Lower Limbs |
title_sort | system for simple real-time anastomotic failure detection and wireless blood flow monitoring in the lower limbs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052026/ https://www.ncbi.nlm.nih.gov/pubmed/27730016 http://dx.doi.org/10.1109/JTEHM.2016.2588504 |
work_keys_str_mv | AT asystemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT asystemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT asystemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT asystemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT asystemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT asystemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT asystemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT systemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT systemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT systemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT systemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT systemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT systemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs AT systemforsimplerealtimeanastomoticfailuredetectionandwirelessbloodflowmonitoringinthelowerlimbs |