Cargando…

End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data

RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Seque...

Descripción completa

Detalles Bibliográficos
Autores principales: Derr, Alan, Yang, Chaoxing, Zilionis, Rapolas, Sergushichev, Alexey, Blodgett, David M., Redick, Sambra, Bortell, Rita, Luban, Jeremy, Harlan, David M., Kadener, Sebastian, Greiner, Dale L., Klein, Allon, Artyomov, Maxim N., Garber, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052061/
https://www.ncbi.nlm.nih.gov/pubmed/27470110
http://dx.doi.org/10.1101/gr.207902.116
_version_ 1782458183111933952
author Derr, Alan
Yang, Chaoxing
Zilionis, Rapolas
Sergushichev, Alexey
Blodgett, David M.
Redick, Sambra
Bortell, Rita
Luban, Jeremy
Harlan, David M.
Kadener, Sebastian
Greiner, Dale L.
Klein, Allon
Artyomov, Maxim N.
Garber, Manuel
author_facet Derr, Alan
Yang, Chaoxing
Zilionis, Rapolas
Sergushichev, Alexey
Blodgett, David M.
Redick, Sambra
Bortell, Rita
Luban, Jeremy
Harlan, David M.
Kadener, Sebastian
Greiner, Dale L.
Klein, Allon
Artyomov, Maxim N.
Garber, Manuel
author_sort Derr, Alan
collection PubMed
description RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3′-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing.
format Online
Article
Text
id pubmed-5052061
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-50520612016-10-19 End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data Derr, Alan Yang, Chaoxing Zilionis, Rapolas Sergushichev, Alexey Blodgett, David M. Redick, Sambra Bortell, Rita Luban, Jeremy Harlan, David M. Kadener, Sebastian Greiner, Dale L. Klein, Allon Artyomov, Maxim N. Garber, Manuel Genome Res Method RNA-seq protocols that focus on transcript termini are well suited for applications in which template quantity is limiting. Here we show that, when applied to end-sequencing data, analytical methods designed for global RNA-seq produce computational artifacts. To remedy this, we created the End Sequence Analysis Toolkit (ESAT). As a test, we first compared end-sequencing and bulk RNA-seq using RNA from dendritic cells stimulated with lipopolysaccharide (LPS). As predicted by the telescripting model for transcriptional bursts, ESAT detected an LPS-stimulated shift to shorter 3′-isoforms that was not evident by conventional computational methods. Then, droplet-based microfluidics was used to generate 1000 cDNA libraries, each from an individual pancreatic islet cell. ESAT identified nine distinct cell types, three distinct β-cell types, and a complex interplay between hormone secretion and vascularization. ESAT, then, offers a much-needed and generally applicable computational pipeline for either bulk or single-cell RNA end-sequencing. Cold Spring Harbor Laboratory Press 2016-10 /pmc/articles/PMC5052061/ /pubmed/27470110 http://dx.doi.org/10.1101/gr.207902.116 Text en © 2016 Derr et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/4.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
spellingShingle Method
Derr, Alan
Yang, Chaoxing
Zilionis, Rapolas
Sergushichev, Alexey
Blodgett, David M.
Redick, Sambra
Bortell, Rita
Luban, Jeremy
Harlan, David M.
Kadener, Sebastian
Greiner, Dale L.
Klein, Allon
Artyomov, Maxim N.
Garber, Manuel
End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data
title End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data
title_full End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data
title_fullStr End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data
title_full_unstemmed End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data
title_short End Sequence Analysis Toolkit (ESAT) expands the extractable information from single-cell RNA-seq data
title_sort end sequence analysis toolkit (esat) expands the extractable information from single-cell rna-seq data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052061/
https://www.ncbi.nlm.nih.gov/pubmed/27470110
http://dx.doi.org/10.1101/gr.207902.116
work_keys_str_mv AT derralan endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT yangchaoxing endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT zilionisrapolas endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT sergushichevalexey endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT blodgettdavidm endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT redicksambra endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT bortellrita endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT lubanjeremy endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT harlandavidm endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT kadenersebastian endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT greinerdalel endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT kleinallon endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT artyomovmaximn endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata
AT garbermanuel endsequenceanalysistoolkitesatexpandstheextractableinformationfromsinglecellrnaseqdata