Cargando…

Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations

Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantita...

Descripción completa

Detalles Bibliográficos
Autores principales: Rocha, Paulo R. F., Schlett, Paul, Kintzel, Ulrike, Mailänder, Volker, Vandamme, Lode K. J., Zeck, Gunther, Gomes, Henrique L., Biscarini, Fabio, de Leeuw, Dago M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052567/
https://www.ncbi.nlm.nih.gov/pubmed/27708378
http://dx.doi.org/10.1038/srep34843
_version_ 1782458249742647296
author Rocha, Paulo R. F.
Schlett, Paul
Kintzel, Ulrike
Mailänder, Volker
Vandamme, Lode K. J.
Zeck, Gunther
Gomes, Henrique L.
Biscarini, Fabio
de Leeuw, Dago M.
author_facet Rocha, Paulo R. F.
Schlett, Paul
Kintzel, Ulrike
Mailänder, Volker
Vandamme, Lode K. J.
Zeck, Gunther
Gomes, Henrique L.
Biscarini, Fabio
de Leeuw, Dago M.
author_sort Rocha, Paulo R. F.
collection PubMed
description Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 μVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations.
format Online
Article
Text
id pubmed-5052567
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-50525672016-10-19 Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations Rocha, Paulo R. F. Schlett, Paul Kintzel, Ulrike Mailänder, Volker Vandamme, Lode K. J. Zeck, Gunther Gomes, Henrique L. Biscarini, Fabio de Leeuw, Dago M. Sci Rep Article Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 μVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 μVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations. Nature Publishing Group 2016-10-06 /pmc/articles/PMC5052567/ /pubmed/27708378 http://dx.doi.org/10.1038/srep34843 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Rocha, Paulo R. F.
Schlett, Paul
Kintzel, Ulrike
Mailänder, Volker
Vandamme, Lode K. J.
Zeck, Gunther
Gomes, Henrique L.
Biscarini, Fabio
de Leeuw, Dago M.
Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations
title Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations
title_full Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations
title_fullStr Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations
title_full_unstemmed Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations
title_short Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations
title_sort electrochemical noise and impedance of au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052567/
https://www.ncbi.nlm.nih.gov/pubmed/27708378
http://dx.doi.org/10.1038/srep34843
work_keys_str_mv AT rochapaulorf electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations
AT schlettpaul electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations
AT kintzelulrike electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations
AT mailandervolker electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations
AT vandammelodekj electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations
AT zeckgunther electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations
AT gomeshenriquel electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations
AT biscarinifabio electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations
AT deleeuwdagom electrochemicalnoiseandimpedanceofauelectrodeelectrolyteinterfacesenablingextracellulardetectionofgliomacellpopulations