Cargando…
Beatquency domain and machine learning improve prediction of cardiovascular death after acute coronary syndrome
Frequency domain measures of heart rate variability (HRV) are associated with adverse events after a myocardial infarction. However, patterns in the traditional frequency domain (measured in Hz, or cycles per second) may capture different cardiac phenomena at different heart rates. An alternative is...
Autores principales: | Liu, Yun, Scirica, Benjamin M., Stultz, Collin M., Guttag, John V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052591/ https://www.ncbi.nlm.nih.gov/pubmed/27708350 http://dx.doi.org/10.1038/srep34540 |
Ejemplares similares
-
Machine Learning Improves Risk Stratification After Acute Coronary Syndrome
por: Myers, Paul D., et al.
Publicado: (2017) -
ECG Morphological Variability in Beat Space for Risk Stratification After Acute Coronary Syndrome
por: Liu, Yun, et al.
Publicado: (2014) -
Predicting outcomes in patients with aortic stenosis using machine learning: the Aortic Stenosis Risk (ASteRisk) score
por: Namasivayam, Mayooran, et al.
Publicado: (2022) -
Choosing Clinical Variables for Risk Stratification Post-Acute Coronary Syndrome
por: Myers, Paul D., et al.
Publicado: (2019) -
ECG-guided non-invasive estimation of pulmonary congestion in patients with heart failure
por: Raghu, Aniruddh, et al.
Publicado: (2023)