Cargando…
A hybrid tunable THz metadevice using a high birefringence liquid crystal
We investigate a hybrid re-configurable three dimensional metamaterial based on liquid crystal as tuning element in order to build novel devices operating in the terahertz range. The proposed metadevice is an array of meta-atoms consisting of split ring resonators having suspended conducting cantile...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052596/ https://www.ncbi.nlm.nih.gov/pubmed/27708395 http://dx.doi.org/10.1038/srep34536 |
Sumario: | We investigate a hybrid re-configurable three dimensional metamaterial based on liquid crystal as tuning element in order to build novel devices operating in the terahertz range. The proposed metadevice is an array of meta-atoms consisting of split ring resonators having suspended conducting cantilevers in the gap region. Adding a “third dimension” to a standard planar device plays a dual role: (i) enhance the tunability of the overall structure, exploiting the birefringence of the liquid crystal at its best, and (ii) improve the field confinement and therefore the ability of the metadevice to efficiently steer the THz signal. We describe the design, electromagnetic simulation, fabrication and experimental characterization of this new class of tunable metamaterials under an externally applied small voltage. By infiltrating tiny quantities of a nematic liquid crystal in the structure, we induce a frequency shift in the resonant response of the order of 7–8% in terms of bandwidth and about two orders of magnitude change in the signal absorption. We discuss how such a hybrid structure can be exploited for the development of a THz spatial light modulator. |
---|